Seminars and Colloquia by Series

Linear and rational factorization of tropical polynomials

Series
Algebra Seminar
Time
Monday, March 30, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Bo LinGeorgia Tech

Already for bivariate tropical polynomials, factorization is an NP-Complete problem.In this talk, we will introduce a rich class of tropical polynomials in n variables, which admit factorization and rational factorization into well-behaved factors. We present efficient algorithms of their factorizations with examples. Special families of these polynomials have appeared in economics,discrete convex analysis, and combinatorics. Our theorems rely on an intrinsic characterization of regular mixed subdivisions of integral polytopes, and lead to open problems of interest in discrete geometry.

The talk will be held online via Bluejeans. Use the following link to join the meeting.

Cancelled - A refined Brill-Noether theory over Hurwitz spaces

Series
Algebra Seminar
Time
Monday, March 23, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hannah LarsonStanford University

This talk was cancelled due to the current status. The following is the original abstract for the talk. The celebrated Brill-Noether theorem says that the space of degree $d$ maps of a general genus $g$ curve to $\mathbb{P}^r$ is irreducible. However, for special curves, this need not be the case. Indeed, for general $k$-gonal curves (degree $k$ covers of $\mathbb{P}^1$), this space of maps can have many components, of different dimensions (Coppens-Martens, Pflueger, Jensen-Ranganathan). In this talk, I will introduce a natural refinement of Brill-Noether loci for curves with a distinguished map $C \rightarrow \mathbb{P}^1$, using the splitting type of push forwards of line bundles to $\mathbb{P}^1$. In particular, studying this refinement determines the dimensions of all irreducible components of Brill-Noether loci of general $k$-gonal curves.

Generating functions for induced characters of the hyperoctahedral group

Series
Algebra Seminar
Time
Monday, March 9, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mark SkanderaLehigh University

Merris and Watkins interpreted results of Littlewood to give generating functions for symmetric group characters induced from one-dimensional characters of Young subgroups.  Beginning with an n by n matrix X of formal variables, one obtains induced sign and trivial characters by expanding sums of products of certain determinants and permanents, respectively. We will look at a new analogous result which holds for hyperoctahedral group characters induced from the four one-dimensional characters of its Young subgroups.  This requires a 2n by 2n matrix of formal variables and four combinations of determinants and permanents.  This is joint work with Jongwon Kim.

Toric Vector Bundles and the tropical geometry of piecewise-linear functions

Series
Algebra Seminar
Time
Monday, March 2, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chris ManonUniversity of Kentucky

Like toric varieties, toric vector bundles are a rich class of algebraic varieties that can be described with combinatorial data.  Klyachko gave a classification of toric vector bundles in terms of certain systems of filtrations in a vector space.  I'll talk about some recent work with Kiumars Kaveh showing that Klyachko's data has an interesting interpretation in terms of tropical geometry.  In particular, we show that toric vector bundles can be classified by points on tropicalized linear spaces over a semifield of piecewise-linear functions.   I'll discuss how to use this recipe and a closely related tropicalization map to produce toric vector bundles and more general flat toric families.  

Differential Invariant Algebras

Series
Algebra Seminar
Time
Monday, February 24, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter OlverUniversity of Minnesota

A classical theorem of Lie and Tresse states that the algebra of differential invariants of a Lie group or (suitable) Lie pseudo-group action is finitely generated.  I will present a fully constructive algorithm, based on the equivariant method of moving frames, that reveals the full structure of such non-commutative differential algebras, and, in particular, pinpoints generating sets of differential invariants as well as their differential syzygies. Some applications and outstanding issues will be discussed.

Oriented Matroids and Combinatorial Neural Codes

Series
Algebra Seminar
Time
Monday, February 17, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zvi RosenFlorida Atlantic University

A combinatorial neural code is convex if it arises as the intersection pattern of convex open subsets of Euclidean space. We relate the emerging theory of convex neural codes to the established theory of oriented matroids, both categorically and with respect to feasibility and complexity. By way of this connection, we prove that all convex codes are related to some representable oriented matroid, and we show that deciding whether a neural code is convex is NP-hard.

The foundation of a matroid

Series
Algebra Seminar
Time
Monday, February 3, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matt BakerGeorgia Tech

Originally introduced independently by Hassler Whitney and Takeo Nakasawa, matroids are a combinatorial way of axiomatizing the notion of linear independence in vector spaces. If $K$ is a field and $n$ is a positive integer, any linear subspace of $K^n$ gives rise to a matroid; such matroid are called representable over $K$. Given a matroid $M$, one can ask over which fields $M$ is representable. More generally, one can ask about representability over partial fields in the sense of Semple and Whittle. Pendavingh and van Zwam introduced the universal partial field of a matroid $M$, which governs the representations of $M$ over all partial fields. Unfortunately, most matroids (asymptotically 100%, in fact) are not representable over any partial field, and in this case, the universal partial field gives no information.

Oliver Lorscheid and I have introduced a generalization of the universal partial field which we call the foundation of a matroid. The foundation of $M$ is a type of algebraic object which we call a pasture; pastures include both hyperfields and partial fields. Pastures form a natural class of field-like objects within Lorscheid's theory of ordered blueprints, and they have desirable categorical properties (e.g., existence of products and coproducts) that make them a natural context in which to study algebraic invariants of matroids. The foundation of a matroid $M$ represents the functor taking a pasture $F$ to the set of rescaling equivalence classes of $F$-representations of $M$; in particular, $M$ is representable over a pasture $F$ if and only if there is a homomorphism from the foundation of $M$ to $F$. (In layman's terms, what we're trying to do is recast as much as possible of the theory of matroids and their representations in functorial ``Grothendieck-style'' algebraic geometry, with the goal of gaining new conceptual insights into various phenomena which were previously understood only through lengthy case-by-case analyses and ad hoc computations.)

As a particular application of this point of view, I will explain the classification which Lorscheid and I have recently obtained of all possible foundations for ternary matroids (matroids representable over the field of three elements). The proof of this classification theorem relies crucially on Tutte's celebrated Homotopy Theorem. 

Brill–Noether theory of Prym varieties

Series
Algebra Seminar
Time
Monday, January 13, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yoav LenGeorgia Tech

The talk will revolve around combinatorial aspects of Abelian varieties. I will focus on Pryms, a class of Abelian varieties that occurs in the presence of double covers, and have deep connections with torsion points of Jacobians, bi-tangent lines of curves, and spin structures. I will explain how problems concerning Pryms may be reduced, via tropical geometry, to problems on metric graphs. As a consequence, we obtain new results concerning the geometry of special algebraic curves, and bounds on dimensions of certain Brill–Noether loci.

Free resolutions of function classes via order complexes

Series
Algebra Seminar
Time
Tuesday, November 19, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Justin ChenGeorgia Institute of Technology

Function classes are collections of Boolean functions on a finite set. Recently, a method of studying function classes via commutative algebra, by associating a squarefree monomial ideal to a function class, was introduced by Yang. I will describe this connection, as well as some free resolutions and Betti numbers for these ideals for an interesting collection of function classes, corresponding to intersection-closed posets. This is joint work with Chris Eur, Greg Yang, and Mengyuan Zhang.

Positively Hyperbolic Varieties

Series
Algebra Seminar
Time
Tuesday, November 12, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

A multivariate complex polynomial is called stable if any line in any positive direction meets its hypersurface only at real points.  Stable polynomials have close relations to matroids and hyperbolic programming.  We will discuss a generalization of stability to algebraic varieties of codimension larger than one.  They are varieties which are hyperbolic with respect to the nonnegative Grassmannian, following the notion of hyperbolicity studied by Shamovich, Vinnikov, Kummer, and Vinzant. We show that their tropicalization and Chow polytopes have nice combinatorial structures related to braid arrangements and positroids, generalizing some results of Choe, Oxley, Sokal, Wagner, and Brändén on Newton polytopes and tropicalizations of stable polynomials. This is based on joint work with Felipe Rincón and Cynthia Vinzant.

Pages