Seminars and Colloquia by Series

Automorphisms of the fine 1-curve graph

Series
Geometry Topology Seminar
Time
Monday, August 28, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roberta ShapiroGeorgia Tech

The fine curve graph of a surface S was introduced by Bowden–Hensel–Webb in 2019 to study the diffeomorphism group of S. We consider a variant of this graph, called the fine 1-curve graph, whose vertices are essential simple closed curves and edges connect curves that intersect in at most one point. Building on the works of Long–Margalit–Pham–Verberne–Yao and Le Roux–Wolff, we show that the automorphism group of the fine 1-curve graph is isomorphic to the homeomorphism group of S. This is joint work with Katherine W. Booth and Daniel Minahan.

Non-positive Stein-fillable open books of genus one

Series
Geometry Topology Seminar
Time
Monday, August 21, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vitalijs BrejevsUniversity of Vienna

Contact 3-manifolds arise organically as boundaries of symplectic 4-manifolds, so it’s natural to ask: Given a contact 3-manifold Y, does there exist a symplectic 4-manifold X filling Y in a compatible way? Stein fillability is one such notion of compatibility that can be explored via open books: representations of a 3-manifold by means of a surface with boundary and its self-diffeomorphism, called a monodromy. I will discuss joint work with Andy Wand in which we exhibit first known Stein-fillable contact manifolds whose supporting open books of genus one have non-positive monodromies. This settles the question of correspondence between Stein fillings and positive monodromies for open books of all genera. Our methods rely on a combination of results of J. Conway, Lecuona and Lisca, and some observations about lantern relations in the mapping class group of the twice-punctured torus.

Knots in overtwisted contact manifolds

Series
Geometry Topology Seminar
Time
Wednesday, July 12, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rima ChatterjeeUniversity of Cologne

Knots in contact manifolds are interesting objects to study. In this talk, I will focus on knots in overtwisted manifolds. There are two types of knots in an overtwisted manifold, one with overtwisted complement (known as loose) and one with tight complement (known as non-loose). Not very surprisingly, non-loose knots behave very mysteriously. They are interesting in their own right as we still do not understand them well. But also one might want to study them because surgery on them produces tight contact structures and understanding tight contact structures is a major problem in the contact world. I'll give a brief history on these knots and discuss some of their classification and structure problems and how these problems differ from the classification/ structure problems of knots in tight manifolds.
 

Extension of homeomorphisms and vector fields of the circle: From Anti-de Sitter to Minkowski geometry.

Series
Geometry Topology Seminar
Time
Monday, May 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Farid DiafUniversité Grenoble Alpes

In 1990, Mess gave a proof of Thurston's earthquake theorem using the Anti-de Sitter geometry. Since then, several of Mess's ideas have been used to investigate the correspondence between surfaces in 3-dimensional Anti de Sitter space and Teichmüller theory.

In this spirit, we investigate the problem of the existence of vector fields giving infinitesimal earthquakes on the hyperbolic plane, using the so-called Half-pipe geometry which is the dual of Minkowski geometry in a suitable sense. In particular, we recover Gardiner's theorem, which states that any Zygmund vector field on the circle can be represented as an infinitesimal earthquake. Our findings suggest a connection between vector fields on the hyperbolic plane and surfaces in 3-dimensional Half-pipe space, which may be suggestive of a bigger picture.

 

Quantum invariants of surface diffeomorphisms and 3-dimensional hyperbolic geometry

Series
Geometry Topology Seminar
Time
Monday, April 24, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Francis BonahonUniversity of Southern California

Please Note: There will be a pretalk 1-1:40pm in Skiles 006.

This talk is motivated by surprising connections between two very different approaches to 3-dimensional topology, and more precisely by the  Kashaev-Murakami-Murakami Volume Conjecture, which relates the growth of colored Jones polynomials of a knot to the hyperbolic volume of its complement. I will discuss a closely related conjecture for diffeomorphisms of surfaces, based on the representation theory of the Kauffman bracket skein algebra of the surface, a quantum topology object closely related to the Jones polynomial of a knot. I will describe partial results obtained in joint work with Helen Wong and Tian Yang.

Symplectic trisections and connected sum decompositions

Series
Geometry Topology Seminar
Time
Monday, April 17, 2023 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter Lambert-ColeUniversity of Georgia

This talk will have two parts.  The first half will describe how to construct symplectic structures on trisected 4-manifolds. This construction is inspired by projective complex geometry and completely characterizes symplectic 4-manifolds among all smooth 4-manifolds.  The second half will address a curious phenomenon: symplectic 4-manifolds appear to not admit any interesting connected sum decompositions.  One potential explanation is that every embedded 3-sphere can be made contact-type.  I will outline some strategies to prove this from a trisections perspective, describe some of the obstructions, and give evidence that these obstructions may be overcome.

Jones diameter and crossing numbers of satellite knots

Series
Geometry Topology Seminar
Time
Monday, April 17, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Speaker
Effie KalfagianniMichigan State University
It has been long known that the quadratic term in the degree of the colored Jones polynomial of knot provides a lower bound of the crossing number the knot.
I’ll discuss work with Lee where we determine the class of knots for which this bound is sharp and give applications to computing crossing numbers of satellite knots.
 

On skein modules of rational homology spheres

Series
Geometry Topology Seminar
Time
Monday, April 10, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Adam SikoraSUNY Buffalo

The Kauffman bracket skein module S(M) of a 3-manifold M classifies polynomial invariants of links in M satisfying Kauffman bracket skein relations. Witten conjectured that the skein module (over a field, with generic A) is finite dimensional for any closed 3-manifold M. This conjecture was proved by Gunningham, Jordan, and Safronov, however their work does not lead to an explicit computation of S(M).
In fact, S(M) has been computed for a few specific families of closed 3-manifolds so far. We introduce a novel method of computing these skein modules for certain rational homology spheres. (This is joint work with R.
Detcherry and E. Kalfagianni.)

On the doubling construction of Legendrian submanifolds

Series
Geometry Topology Seminar
Time
Monday, April 3, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

In high dimensional contact and symplectic topology, finding interesting constructions for Legendrian submanifolds is an active area of research. Further, it is desirable that the constructions lend themselves nicely to computation of invariants. The doubling construction was defined by Ekholm, which uses Lagrangian fillings of a Legendrian knot in standard contact R^{2n-1} to produce a closed Legendrian submanifold in standard contact R^{2n+1}. Later Courte-Ekholm showed that symmetric doubles of embedded fillings are "uninteresting". In recent work the symmetric doubling construction was generalised to any contact manifold, giving two isotopic constructions related to open book decompositions of the ambient manifold. In a separate joint work with James Hughes, we explore the asymmetric doubling construction through Legendrian weaves.

Lefschetz Fibrations and Exotic 4-Manifolds III

Series
Geometry Topology Seminar
Time
Friday, March 31, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Nur SaglamGeorgia Tech

Lefschetz fibrations are very useful in the sense that they have one-one correspondence with the relations in the Mapping Class Groups and they can be used to construct exotic (homeomorphic but not diffeomorphic) 4-manifolds. In this series of talks, we will first introduce Lefschetz fibrations and Mapping Class Groups and give examples. Then, we will dive more into 4-manifold world. More specifically, we will talk about the history of  exotic 4-manifolds and we will define the nice tools used to construct exotic 4-manifolds, like symplectic normal connect sum, Rational Blow-Down, Luttinger Surgery, Branch Covers, and Knot Surgery. Finally, we will provide various constructions of exotic 4-manifolds.

Pages