Seminars and Colloquia by Series

Interpolating between the optimal transport problems of Monge and Kantorovich

Series
Math Physics Seminar
Time
Friday, February 21, 2025 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Brendan PassUniversity of Alberta

I will present joint work in progress with Gero Friesecke.  We introduce a two parameter family of variational problems; varying the first parameter interpolates between a regularized version of Monge's optimal transport (OT) problem and Kantorovich's relaxed version.  The first limit problem has the advantage over Monge's original problem of always admitting a solution.  In cases where a (sufficiently regular) Monge map exists, the solution will be of such a form; if not, the limit problem essentially minimizes the transportation cost among all best approximations of the target measure by  pushforwards of the source.  When the source measure is discrete, we show that this is equivalent to the optimal quantization of the target measure, with the additional constraint that the weights of the approximating discrete masses are prescribed.  The second parameter controls the regularity of the pseudo-Monge map. In both the high and low regularity limits, the problem converges to the classical Kantorovich problem, under mild assumptions.

 

Part of the motivation for this problem is to understand whether the strictly correlated electron ansatz is valid in the semi-classical limit of density functional theory (DFT).  We will briefly discuss the corresponding application of OT to DFT, and outline what is known about the existence of Monge solutions (or, equivalently, the validity of the strictly correlated electron ansatz).

On the Meissner state for type-II inhomogeneous superconductors

Series
Math Physics Seminar
Time
Friday, January 24, 2025 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Carlos RománPontificia Universidad Católica de Chile

The Ginzburg-Landau model is a phenomenological description of superconductivity. A key feature of type-II superconductors is the emergence of singularities, known as vortices, which occur when the external magnetic field exceeds the first critical field. Determining the location and number of these vortices is crucial. Furthermore, the presence of impurities in the material can influence the configuration of these singularities.

In this talk, I will present an estimation of the first critical field for inhomogeneous type-II superconductors and show that the model admits stable local minimizers without vortices, corresponding to Meissner type solutions, even when the external magnetic field intensity significantly exceeds the first critical field, approaching the so-called superheating field. This work is in collaboration with Matías Díaz-Vera.

The Gibbs state of the mean-field Bose gas and a new correlation inequality

Series
Math Physics Seminar
Time
Friday, December 6, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
L2 Classroom Howey Physics
Speaker
Andreas DeuchertVirginia Tech

We consider the mean field Bose gas on the unit torus at temperatures proportional to the critical temperature of the Bose—Einstein condensation phase transition. We discuss trace norm convergence of the Gibbs state to a state given by a convex combination of quasi-free states. Two consequences of this relation are precise asymptotic formulas for the two-point function and the distribution of the number of particles in the condensate. A crucial ingredient of the proof is a novel abstract correlation inequality. This is joint work with Nam Panh Tanh and Marcin Napiorkowski. 

A criterion for crystallization in hard-core lattice particle systems

Series
Math Physics Seminar
Time
Friday, November 15, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Clough 280
Speaker
Ian JauslinRutgers University

As is well known, many materials freeze at low temperatures. Microscopically,
  this means that their molecules form a phase where there is long range order
  in their positions. Despite their ubiquity, proving that these freezing
  transitions occur in realistic microscopic models has been a significant
  challenge, and it remains an open problem in continuum models at positive
  temperatures. In this talk, I will focus on lattice particle models, in which
  the positions of particles are discrete, and discuss a general criterion
  under which crystallization can be proved to occur. The class of models that
  the criterion applies to are those in which there is *no sliding*, that is,
  particles are largely locked in place when the density is large. The tool
  used in the proof is Pirogov-Sinai theory and cluster expansions. I will
  present the criterion in its general formulation, and discuss some concrete
  examples. This is joint work with Qidong He and Joel L. Lebowitz.

Taking a trip to moiré land: Foundations of moiré phonons

Series
Math Physics Seminar
Time
Friday, November 8, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Clough 280
Speaker
Michael HottUniversity of Minnesota Twin Cities

As highly tunable platforms with exotic rich phase diagrams, moiré materials have captured the hearts and minds of physicists. Moiré materials arise when 2D crystal layers are stacked at relative twists. Their almost periodicity and multiscale behavior make these materials particularly mathematically appealing. We will describe the challenges in establishing a framework to study (phonon/vibrational) wave propagation in these materials, and explain how to overcome them.

Lower bounds in quantum dynamics via discrepancy estimates

Series
Math Physics Seminar
Time
Friday, November 1, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Clough 280
Speaker
Matthew PowellGeorgia Tech

We will discuss the quantum dynamics associated with ergodic Schroedinger operators. Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) has been obtained for a variety of ergodic operator families, but it is well known that Anderson localization is highly unstable and can also be destroyed by generic rank one perturbations. For quasiperiodic operators, it also sensitively depends on the arithmetic properties of the phase (a seemingly irrelevant parameter from the point of view of the physics of the problem) and doesn’t hold generically. These instabilities are also present for the physically relevant notion of dynamical localization. In this talk, we will discuss the notion of discrepancy and present current and ongoing work establishing novel upper bounds of the discrepancy for skew-shift sequences. As an application of our bounds, we improve the quantum dynamical bounds in Liu [2023] and Jitomirskaya-Powell [2022].

An interesting variational problem related to the Cwikel-Lieb-Rozenblum inequality and its solution

Series
Math Physics Seminar
Time
Friday, October 18, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Clough 280
Speaker
Tobias ReidGeorgia Tech

The Cwikel-Lieb-Rozenblum (CLR) inequality is a semi-classical estimate on the number of bound states for Schrödinger operators. In this talk I will give a brief overview of the CLR inequality and present a substantial refinement of Cwikel’s original approach which leads to an astonishingly good bound for the constant in the CLR inequality. Our new proof highlights a natural but overlooked connection of the CLR inequality with bounds for maximal Fourier multipliers from harmonic analysis and leads to a variational problem that can be reformulated in terms of a variant of Hadamard’s three-lines lemma. The solution of this variational problem relies on some interesting complex analysis techniques. (Based on joint work with T. Carvalho-Corso, D. Hundertmark, P. Kunstmann, S. Vugalter)

The intertwined derivative Schrödinger system of Calogero--Moser--Sutherland type

Series
Math Physics Seminar
Time
Wednesday, April 10, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ruoci SunSchool of Mathematics, Georgia Tech

Please Note: Available via zoom at: https://gatech.zoom.us/j/98258240051

This presentation is dedicated to extending both defocusing and focusing Calogero–Moser–Sutherland derivative nonlinear Schrödinger equations (CMSdNLS), which are introduced in Abanov–Bettelheim–Wiegmann [arXiv:0810.5327], Gérard-Lenzmann [arXiv:2208.04105] and R. Badreddine [arXiv:2303.01087, arXiv:2307.01592], to a system of two matrix-valued variables. This new system is an integrable extension and perturbation of the original CMSdNLS equations. Thanks to the conjugation acting method, I can establish the explicit expression for general solutions on the torus and on the real line in my work [hal-04227081].

Advancements in Persistence Solutions for Functional Perturbed Uniformly Hyperbolic Trajectories: Insights into Relativistic Charged Particle Motion

Series
Math Physics Seminar
Time
Wednesday, April 3, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skyles 006
Speaker
Joan GimenoUniversitat de Barcelona

Please Note: Available online at: https://gatech.zoom.us/j/98258240051

We develop a method to construct solutions of some (retarded or advanced) equations. A prime example could be the motion of point charges interacting via the fully relativistic Lienard-Wiechert potentials (as suggested by J.A. Wheeler and R.P. Feynman in the 1940's). These are retarded equations, but the delay depends implicitly on the trajectory. We assume that the equations considered are formally close to an ODE and that the ODE admits hyperbolic solutions (that is, perturbations transversal to trajectory grow exponentially either in the past or in the future) and we show that there are solutions of the functional equation close to the hyperbolic solutions of the ODE. The method of proof does not require to formulate the delayed problem as an evolution for a class of initial data. The main result is formulated in an "a-posteriori" format and allows to show that solutions obtained by non-rigorous approximations are close (in some precise sense) to true solutions. In the electrodynamics (or gravitational) case, this allows to compare the hyperbolic solutions of several post-newtonian approximations or numerical approximations with the solutions of the Lienard-Weichert interaction. This is a joint work with R. de la Llave and J. Yang.

Convergence times for random walks on the unitary group

Series
Math Physics Seminar
Time
Wednesday, March 13, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shivan MittalDepartment of Physics, The University of Texas at Austin

Please Note: Available online at: https://gatech.zoom.us/j/98258240051

Consider the following question of interest to cryptographers: A message is encoded in a binary string of length n. Consider a set of scrambling operations S (a proper subset of permutations on n bits). If a scrambling operation is applied uniformly at random from S at each step, then after how many steps will the composition of scrambling operations look like a random permutation on all the bits? This question asks for the convergence time for a random walk on the permutation group. Replace the binary string with a quantum state and scrambling operations in S with Haar random quantum channels on two bits (qudits) at a time. Broadly speaking, we study the following question: If a scrambling operation is applied uniformly at random from S at each step, then after how many steps will the composition of scrambling operations (quantum channels) look like a Haar random channel on all qudits? This question asks about the convergence time for a random walk on the unitary group. Various protocols in quantum computing require Haar random channels, which motivates us to understand the number of operations one would require to approximately implement that channel.

More specifically, in our study, we add a connected-graph structure to scrambling operations (a step on the random walk), where qudits are identified by vertices and the allowed 2-qudit scrambling operations are represented by edges. We develop new methods for lower bounds on spectral gaps of a class of Hamiltonians and use those to derive bounds on the convergence times of the aforementioned random walk on the unitary group with the imposed graph structure. We identify a large family of graphs for which O(poly(n)) steps suffice and show that for an arbitrary connected graph O(n^(O(log(n))) steps suffice. Further we refute the conjectured O(n log(n)) steps for a family of graphs.

Pages