Seminars and Colloquia by Series

Small-Time Asymptotic Methods for Levy-Based Jump-Diffusion Models

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, October 21, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruoting GongIllinois Institute of Technology
In recent years, small-time asymptotic methods have attracted much attention in mathematical finance. Such asymptotics are especially crucial for jump-diffusion models due to the lack of closed- form formulas and efficient valuation procedures. These methods have been widely developed and applied to diverse areas such as short-time approximations of option prices and implied volatilities, and non-parametric estimations based on high-frequency data. In this talk, I will discuss some results on the small-time asymptotic behavior of some Levy functionals with applications in finance.

Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach

Series
Mathematical Finance/Financial Engineering Seminar
Time
Tuesday, April 8, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Minqiang LiBloomberg
Many derivatives products are directly or indirectly associated with integrated diffusion processes. We develop a general perturbation method to price those derivatives. We show that for any positive diffusion process, the hitting time of its integrated process is approximately normally distributed when the diffusion coefficient is small. This result of approximate normality enables us to reduce many derivative pricing problems to simple expectations. We illustrate the generality and accuracy of this probabilistic approach with several examples, with emphasis on timer options. Major advantages of the proposed technique include extremely fast computational speed, ease of implementation, and analytic tractability.

Generalized Measures of Correlation and Their Implications in GARCH and Heston Models

Series
Mathematical Finance/Financial Engineering Seminar
Time
Thursday, March 27, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zhengjun ZhangUniversity of Wisconsin
Applicability of Pearson's correlation as a measure of explained variance is by now well understood. One of its limitations is that it does not account for asymmetry in explained variance. Aiming to obtain broad applicable correlation measures, we use a pair of r-squares of generalized regression to deal with asymmetries in explained variances, and linear or nonlinear relations between random variables. We call the pair of r-squares of generalized regression generalized measures of correlation (GMC). We present examples under which the paired measures are identical, and they become a symmetric correlation measure which is the same as the squared Pearson's correlation coefficient. As a result, Pearson's correlation is a special case of GMC. Theoretical properties of GMC show that GMC can be applicable in numerous applications and can lead to more meaningful conclusions and decision making. In statistical inferences, the joint asymptotics of the kernel based estimators for GMC are derived and are used to test whether or not two random variables are symmetric in explaining variances. The testing results give important guidance in practical model selection problems. In real data analysis, this talk presents ideas of using GMCs as an indicator of suitability of asset pricing models, and hence new pricing models may be motivated from this indicator.

Fractional calculus and Lévy statistics in non-diffusive transport modeling and option pricing in finance

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, April 24, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Diego del-Castillo-NegreteOak Ridge National Laboratory

Please Note: Hosts Christian Houdre and Liang Peng

Fractional calculus (FC) provides a powerful formalism for the modeling of systems whose underlying dynamics is governed by Lévy stochastic processes. In this talk we focus on two applications of FC: (1) non-diffusive transport, and (2) option pricing in finance. Regarding (1), starting from the continuous time random walk model for general Lévy jump distribution functions with memory, we construct effective non-diffusive transport models for the spatiotemporal evolution of the probability density function of particle displacements in the long-wavelength, time-asymptotic limit. Of particular interest is the development of models in finite-size-domains and those incorporating tempered Lévy processes. For the second application, we discuss fractional models of option prices in markets with jumps. Financial instruments that derive their value from assets following FMLS, CGMY, and KoBoL Lévy processes satisfy fractional diffusion equations (FDEs). We discuss accurate, efficient methods for the numerical integration of these FDEs, and apply them to price barrier options. The numerical methods are based on the finite difference discretization of the regularized fractional derivatives in the Grunwald-Letnikov representation.

Stochastic Representation of Solutions to Degenerate Elliptic Boundary Value and Obstacle Problems with Dirichlet Boundary Conditions

Series
Mathematical Finance/Financial Engineering Seminar
Time
Friday, April 19, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruoting GongRutgers University

Please Note: Hosts: Christian Houdre and Liang Peng

We prove stochastic representation formulae for solutions to elliptic boundary value and obstacle problems associated with a degenerate Markov diffusion process on the half-plane. The degeneracy in the diffusion coefficient is proportional to the \alpha-power of the distance to the boundary of the half-plane, where 0 < \alpha < 1 . This generalizes the well-known Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion process. The generator of this degenerate diffusion process with killing, is a second-order, degenerate-elliptic partial differential operator where the degeneracy in the operator symbol is proportional to the 2\alpha-power of the distance to the boundary of the half-plane. Our stochastic representation formulae provides the unique solution to the degenerate partial differential equation with partial Dirichlet condition, when we seek solutions which are suitably smooth up to the boundary portion \Gamma_0 contained in the boundary of the half-plane. In the case when the full Dirichlet condition is given, our stochastic representation formulae provides the solutions which are not guaranteed to be any more than continuous up to the boundary portion \Gamma_0 .

Admissible Risks and Convex Order

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, April 17, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruodu WangUniversity of Waterloo

Please Note: Hosts: Christian Houdre and Liang Peng

We introduce the admissible risk class as the set of possible aggregate risks when the marginal distributions of individual risks are given but the dependence structure among them is unspecified. The convex ordering upper bound on this class is known to be attained by the comonotonic scenario, but a sharp lower bound is a mystery for dimension larger than 2. In this talk we give a general convex ordering lower bound over this class. In the case of identical marginal distributions, we give a sufficient condition for this lower bound to be sharp. The results are used to identify extreme scenarios and calculate bounds on convex risk measures and other quantities of interest, such as expected utilities, stop-loss premiums, prices of European options and TVaR. Numerical illustrations are provided for different settings and commonly-used distributions of risks.

Robust optimization and quadratic BSDEs

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, November 28, 2012 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel HernandezCIMAT, Mexico

Please Note: Hosts: Christian Houdre and Liang Peng

The relation between robust utility maximization problems and quadratic backward stochastic differential equations will be explored in this talk. Motivated by the solution of the dual formulation of the robust hedging problem for semi-martingales, when the model adopted is a diffusion it is possible to describe more completely the solution using the dynamic programming intuition, as well as some results of BSDEs.

Coupled diffusions and systemic risk

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, October 31, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
J.-P. FouqueDepartment of Statistics and Applied Probability, University of California Santa Barbara,

Please Note: Hosted by Christian Houdre and Liang Peng

We present a simple model of diffusions coupled through their drifts in a way that each component mean-reverts to the mean of the ensemble. In particular, we are interested in the number of components reaching a "default" level in a given time. This coupling creates stability of the system in the sense that there is a large probability of "nearly no default". However, we show that this "swarming" behavior also creates a small probability that a large number of components default corresponding to a "systemic risk event". The goal is to illustrate systemic risk with a toy model of lending and borrowing banks, using mean-field limit and large deviation estimates for a simple linear model. In the last part of the talk we will show some recent work with Rene Carmona on a "Mean Field Game" version of the previous model and the effects of the game on stability and systemic risk.

Stochastic volatility with long-memory in discrete and continuous time

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, September 19, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Frederi ViensPurdue University

Please Note: Hosts Christian Houdre and Liang Peng

It is commonly accepted that certain financial data exhibit long-range dependence. A continuous time stochastic volatility model is considered in which the stock price is geometric Brownian motion with volatility described by a fractional Ornstein-Uhlenbeck process. Two discrete time models are also studied: a discretization of the continuous model via an Euler scheme and a discrete model in which the returns are a zero mean iid sequence where the volatility is a fractional ARIMA process. A particle filtering algorithm is implemented to estimate the empirical distribution of the unobserved volatility, which we then use in the construction of a multinomial recombining tree for option pricing. We also discuss appropriate parameter estimation techniques for each model. For the long-memory parameter, we compute an implied value by calibrating the model with real data. We compare the performance of the three models using simulated data and we price options on the S&P 500 index. This is joint work with Prof. Alexandra Chronopoulou, which appeared in Quantitative Finance, vol 12, 2012.

Bond market models with Levy random factors

Series
Mathematical Finance/Financial Engineering Seminar
Time
Wednesday, April 25, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jerzy ZabczykInstitute of Mathematics, Polish Academy of Sciences

Please Note: Hosts Christian Houdre and Liang Peng

The talk is devoted to the Heath-Jarrow-Morton modeling of the bond market with stochastic factors of the Levy type. It concentrates on properties of the forward rate process like positivity and mean reversion. The process satisfies a stochastic partial differential equation and sufficient conditions are given under which the equation has a positive global solution. In the special case, when the volatility is a linear functional of the forward curve, the sufficient conditions are close to the necessary ones.

Pages