Seminars and Colloquia by Series

Self-similar singular solutions in gas dynamics

Series
PDE Seminar
Time
Tuesday, April 9, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Juhi JangUniversity of Southern California

In this talk, we will discuss mathematical construction of self-similar solutions exhibiting implosion arising in gas dynamics and gaseous stars, with focus on self-similar converging-diverging shock wave solutions to the non-isentropic Euler equations and imploding solutions to the Euler-Poisson equations describing gravitational collapse. The talk is based on joint works with Guo, Hadzic, Liu and Schrecker. 

Gradient Elastic Surfaces and the Elimination of Fracture Singularities in 3D Bodies

Series
PDE Seminar
Time
Tuesday, March 26, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Casey Rodriguez University of North Carolina at Chapel Hill

In this talk, we give an overview of recent work in gradient elasticity.  We first give a friendly introduction to gradient elasticity—a mathematical framework for understanding three-dimensional bodies that do not dissipate a form of energy during deformation. Compared to classical elasticity theory, gradient elasticity incorporates higher spatial derivatives that encode certain microstructural information and become significant at small spatial scales. We then discuss a recently introduced theory of three-dimensional Green-elastic bodies containing gradient elastic material boundary surfaces. We then indicate how the resulting model successfully eliminates pathological singularities inherent in classical linear elastic fracture mechanics, presenting a new and geometric alternative theory of fracture.

Spectral minimal partitions, nodal deficiency and the Dirichlet-to-Neumann map

Series
PDE Seminar
Time
Tuesday, March 12, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jeremy L. MarzuolaUniversity of North Carolina at Chapel Hill

The oscillation of a Laplacian eigenfunction gives a great deal of information about the manifold on which it is defined. This oscillation can be encoded in the nodal deficiency, an important geometric quantity that is notoriously hard to compute, or even estimate. Here we compare two recently obtained formulas for the nodal deficiency, one in terms of an energy function on the space of equipartitions of the manifold, and the other in terms of a two-sided Dirichlet-to-Neumann map defined on the nodal set. We relate these two approaches by giving an explicit formula for the Hessian of the equipartition energy in terms of the Dirichlet-to-Neumann map. This allows us to compute Hessian eigenfunctions, and hence directions of steepest descent, for the equipartition energy in terms of the corresponding Dirichlet-to-Neumann eigenfunctions. Our results do not assume bipartiteness, and hence are relevant to the study of spectral minimal partitions.  This is joint work with Greg Berkolaiko, Yaiza Canzani and Graham Cox.

Viscosity solutions for Mckean-Vlasov control on a torus

Series
PDE Seminar
Time
Tuesday, March 5, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Qinxin YanPrinceton University

An optimal control problem in the space of probability measures, and the viscosity solutions of the corresponding dynamic programming equations defined using the intrinsic linear derivative are studied. The value function is shown to be Lipschitz continuous with respect to a novel smooth Fourier Wasserstein metric. A comparison result between the Lipschitz viscosity sub and super solutions of the dynamic programming equation is proved using this metric, characterizing the value function as the unique Lipschitz viscosity solution. This is joint work with Prof. H. Mete Soner. 

On the well-posedness of the Mortensen observer for a defocusing cubic wave equation

Series
PDE Seminar
Time
Tuesday, February 27, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Jesper SchröderTechnische Universität Berlin

In this presentation the analytical background of nonlinear observers based on minimal energy estimation is discussed. Originally, such strategies were proposed for the reconstruction of the state of finite dimensional dynamical systems by means of a measured output where both the dynamics and the output are subject to white noise. Our work aims at lifting this concept to a class of partial differential equations featuring deterministic perturbations using the example of a wave equation with a cubic defocusing term in three space dimensions. In particular, we discuss local regularity of the corresponding value function and consider operator Riccati equations to characterize its second spatial derivative.

On symplectic mean curvature flows

Series
PDE Seminar
Time
Tuesday, February 20, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jiayu LiUniversity of Science and Technology of China

  It is known that the symplectic property is preserved by the mean curvature flow in a K\"ahler-Einstein surface which is called "symplectic mean curvature flow". It was proved that there is no finite time Type I singularities for the symplectic mean curvature flow. We will talk about recent progress on an important Type II singularity of symplectic mean curvature flow-symplectic translating soliton. We will show that a symplectic translating soliton must be a plane under some natural assumptions which are necessary by investigating some examples.

Optimal localization for the Einstein constraints

Series
PDE Seminar
Time
Tuesday, February 13, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Philippe G. LeFlochSorbonne University and CNRS

I will discuss a nonlinear elliptic system of partial differential equations arising in Riemannian geometry and General Relativity. Specifically, I will present recent advances on the analysis of asymptotically Euclidean, initial data sets for Einstein’s field equations. In collaboration with Bruno Le Floch (Sorbonne University) I proved that solutions to the Einstein constraints can be glued together along possibly nested conical domains. The constructed solutions may have arbitrarily low decay at infinity, while enjoying (super-)harmonic estimates within possibly narrow cones at infinity. Importantly, our localized seed-to-solution method, as we call it, leads to a proof of a conjecture by Alessandro Carlotto and Richard Schoen on the localization problem at infinity, and generalize P. LeFloch and Nguyen’s theorem on the asymptotic localization problem. This lecture will be based on https://arxiv.org/abs/2312.17706

Inviscid limit from Navier-Stokes to BV solutions of compressible Euler equations

Series
PDE Seminar
Time
Tuesday, February 6, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Geng ChenUniversity of Kansas

 In the realm of mathematical fluid dynamics, a formidable challenge lies in establishing inviscid limits from the Navier-Stokes equations to the Euler equations. The pursuit of solving this intricate problem, particularly concerning singular solutions, persists in both compressible and incompressible scenarios. In particular, compressible Euler equations are a typical system of hyperbolic conservation laws, whose solution forms shock waves in general.

 

In this talk, we will discuss the recent proof on the unique vanishing viscosity limit from Navier-Stokes equations to the BV solution of compressible Euler equations, for the general Cauchy Problem. Moreover, we extend our findings by establishing the well-posedness of such solutions within the broader class of inviscid limits of Navier-Stokes equations with locally bounded energy initial values.  This is a joint work with Kang and Vasseur, which can be found on arXiv:2401.09305.

 

The uniqueness and L2 stability of Euler equations, done by Chen-Krupa-Vasseur, will also be discussed in this talk.

Persistence of spatial analyticity in 3D hyper-dissipative Navier-Stokes models

Series
PDE Seminar
Time
Tuesday, January 23, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zoran Grujic University of Alabama Birmingham

It has been known since the pioneering work of J.L. Lions in 1960s that 3D hyper-dissipative (HD) Navier-Stokes (NS) system exhibits global-in-time regularity as long as the hyper-diffusion exponent is greater or equal to 5/4.  One should note that at 5/4, the system is critical, i.e., the energy level and the scaling -invariant level coincide. What happens in the super-critical regime, the hyper-diffusion exponent being strictly between 1 and 5/4 remained a mystery. 

 

The goal of this talk is to demonstrate that as soon as the hyper-diffusion exponent is greater than 1, a class of monotone blow-up scenarios consistent with the analytic structure of the flow (prior to the possible singular time) can be ruled out (a sort of 'runaway train' scenario). The argument is in the spirit of the regularity theory of the 3D HD NS system in 'turbulent scenario' (in the super-critical regime) developed by Grujic and Xu, relying on 'dynamic interpolation' – however, it is much shorter, tailored to the class of blow-up profiles in view. This is a joint work with Aseel Farhat.

Global Solutions For Systems of Quadratic Nonlinear Schrödinger Equations in 3D

Series
PDE Seminar
Time
Tuesday, January 16, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Boyang SuUniversity of Chicago


The existence of global solutions for the Schrödinger equation
 i\partial_t u + \Delta u = P_d(u),
with nonlinearity $P_d$ homogeneous of degree $d$, has been extensively studied. Most results focus on the case with gauge invariant nonlinearity, where the solution satisfies several conservation laws. However, the problem becomes more complicated as we consider a general nonlinearity $P_d$. So far, global well-posedness for small data is known for $d$ strictly greater than the Strauss exponent. In dimension $3$, this Strauss exponent is $2$, making NLS with quadratic nonlinearity an interesting topic.

In this talk, I will present a result that shows the global existence and scattering for systems of quadratic NLS for small, localized data. To tackle the challenge presented by the $u\Bar{u}$-type nonlinearity, we require an $\epsilon$ regularization for the terms of this type in the system.
 

Pages