### Locally integrable non-Liouville analytic geodesic flows on T^2

- Series
- CDSNS Colloquium
- Time
- Monday, August 29, 2016 - 11:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Livia Corsi – Georgia Tech - School of Math

A metric on the 2-torus T^2 is said to be "Liouville" if in some coordinate system it has the form ds^2 = (F(q_1) + G(q_2)) (dq_1^2 + dq_2^2). Let S^*T^2 be the unit cotangent bundle.A "folklore conjecture" states that if a metric is integrable (i.e. the union of invariant 2-dimensional tori form an open and dens set in S^*T^2) then it is Liouville: l will present a counterexample to this conjecture.Precisely I will show that there exists an analytic, non-separable, mechanical Hamiltonian H(p,q) which is integrable on an open subset U of the energy surface {H=1/2}. Moreover I will show that in {H=1/2}\U it is possible to find hyperbolic behavior, which in turn means that there is no analytic first integral on the whole energy surface.This is a work in progress with V. Kaloshin.