Seminars and Colloquia by Series

Algebraic definitions for string topology

Series
Geometry Topology Seminar Pre-talk
Time
Monday, February 17, 2020 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kate PoirierCUNY - City College of Technology

String topology studies various algebraic structures given by intersecting loops in a manifold, as well as those on the Hochschild chains or homology of an algebra. In this preparatory talk, we survey a collection of such structures and their relationships with one another.

Pre-talk for "The coalgebra of singular chains and the fundamental group"

Series
Geometry Topology Seminar Pre-talk
Time
Monday, January 27, 2020 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Manuel RiveraPurdue

In the first talk I will introduce the main constructions, many of which are classical, from scratch. This part will be introductory and accessible to a general audience with a basic knowledge of topology. This introduction will also serve as preparation for the main talk in which I will outline the proof and discuss some applications.

Knot Floer homology

Series
Geometry Topology Seminar Pre-talk
Time
Monday, November 4, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tom HockenhullUniversity of Glasgow

I’ll try and give some background on the definition of knot Floer homology, and perhaps also bordered Heegaard Floer homology if time permits.

Heegaard Floer homology and Seifert manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, October 28, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skile 006
Speaker
Sungkyung KangChinese University of Hong Kong

Heegaard Floer homology gives a powerful invariant of closed 3-manifolds. It is always computable in the purely combinatorial sense, but usually computing it needs a very hard work. However, for certain graph 3-manifolds, its minus-flavored Heegaard Floer homology can be easily computed in terms of lattice homology, due to Nemethi. I plan to give the basic definitions and constructions of Heegaard Floer theory and lattice homology, as well as the isomorphism between those two objects.

Pages