Seminars and Colloquia by Series

Contact structures, open books, and convex surfaces

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 25, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joseph BreenUniversity of Iowa

This talk will include background information on contact structures and open book decompositions of 3-manifolds and the relationship between them. I will state the necessary definitions and include a number of concrete examples. I will also review some convex surface theory, which is the tool used in the main talk to investigate the contact structure – open book relationship.

Elliptic surfaces from the perspective of Kirby Calculus

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 18, 2023 - 13:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Charles SteinNYU

Elliptic surfaces are some of the most well-behaved families of smooth, simply-connected four-manifolds from the geometric and analytic perspective. Many of their smooth invariants are easily computable and they carry a fibration structure which makes it possible to modify them by various surgical operations. However, elliptic surfaces have large Euler characteristics which means even their simplest handle-decompositions appear to be quite complicated. In this seminar, we will learn how to draw several different handle diagrams of elliptic surfaces which show explicitly many of their nice properties. This will allow us to see many useful properties of elliptic surfaces combinatorially, and gives insight into the constructions of their exotic smooth structures. 

Introductions to convex sets in CAT(0) space

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 11, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammad GhomiGeorgia Tech

A CAT(0) space is a geodesic metric space where triangles are thinner than comparison triangles in a Euclidean plane. Prime examples of CAT(0) spaces are Cartan-Hadamard manifolds: complete simply connected Riemannian spaces with nonpositive curvature, which include Euclidean and Hyperbolic space as special cases. The triangle condition ensures that every pair of points in a CAT(0) space can be connected by a unique geodesic. A subset of a CAT(0) space is convex if it contains the geodesic connecting every pair of its points. We will give a quick survey of classical results in differential geometry on characterization of convex sets, such the theorems of Hadamard and  of Chern-Lashof, and also cover other background from the theory of CAT(0) spaces and Alexandrov geometry, including the rigidity theorem of Greene-Wu-Gromov, which will lead to the new results in the second talk.
 

An introduction to the combinatorial topology of surfaces

Series
Geometry Topology Seminar Pre-talk
Time
Monday, August 28, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Roberta ShapiroGeorgia Tech

This talk will be an introduction to the theory of surfaces, some tools we use to study surfaces, and some uses of surfaces in "real life". In particular, we will discuss the mapping class group and the curve complex. This talk will be aimed at an audience with a minimal background in low-dimensional topology. 

Legendrian knots and their invariants

Series
Geometry Topology Seminar Pre-talk
Time
Monday, February 20, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Angela WuLousiana State University

Legendrian knots are smooth knots which are compatible with an ambient contact structure. They are an essential object of study in contact and symplectic geometry, and many easily posed questions about these knots remain unanswered. In this talk I will introduce Legendrian knots, their properties, some of their invariants. Expect lots of pictures.

The profinite topology on a group

Series
Geometry Topology Seminar Pre-talk
Time
Monday, February 6, 2023 - 12:45 for 1 hour (actually 50 minutes)
Location
Speaker
Tam Cheetham-WestRice University

The finite index subgroups of a finitely presented group generate a topology on the group. We will discuss using examples how this relates to the organization of a group's finite quotients, and introduce the ideas of profinite rigidity and flexibility. 

Morse functions on surfaces, the pants complex, and 4-manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, December 5, 2022 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gabriel IslambouliUC Davis

We show how to obtain a decomposition of an arbitrary closed, smooth, orientable 4-manifold from a loop of Morse functions on a surface or as a loop in the pants complex. A nice feature of all of these decompositions is that they can be encoded on a surface so that, in principle, 4-manifold topology can be reduced to surface topology. There is a good amount to be learned from translating between the world of Morse functions and the world of pants decompositions.  We will allude to some of the applications of this translation and point the interested researcher to where they can learn more. No prior knowledge of these fields is assumed and there will be plenty of time for questions.

From walls to cube complexes by Abdul Zalloum

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 19, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
Speaker
Abdalrazzaq (Abdul) ZalloumUniversity of Toronto

A geodesic metric space is said to be CAT(0) if triangles are at most as fat as triangles in the Euclidean plane. A CAT(0) cube complex is a CAT(0) space which is built by gluing Euclidean cubes isometrically along faces. Due to their fundamental role in the resolution of the virtual Haken's conjecture, CAT(0) cube complexes have since been a central object of study in geometric group theory and their study has led to ground-breaking advances in 3–manifold theory. The class of groups admitting proper cocompact actions on CAT(0) cube complexes is very broad and it includes hyperbolic 3-manifolds, most non-geometric 3 manifold groups, small cancelation groups and many others. 

 

A revolutionary work of Sageev shows that the entire structure of a CAT(0) cube complexes is encoded in its hyperplanes and the way they interact with one another. I will discuss Sageev's theorem which provides a recipe for constructing group actions on CAT(0) cube complexes using some very simple and purely set theoretical data.

From little things big things grow by Tyrone Ghaswala

Series
Geometry Topology Seminar Pre-talk
Time
Monday, March 22, 2021 - 13:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Tyrone GhaswalaCIRGET, Université du Québec à Montréal

This pre-talk will be an introduction to infinite-type surfaces and big mapping class groups. I will have a prepared talk, but it will be extremely informal, and I am more than happy to take scenic diversions if the audience so desires!

Pages