fa20

Fall 2020

Archived: 

Algebra I

Graduate level linear and abstract algebra including groups, rings, modules, and fields. (1st of two courses)

Graph Theory

Fundamentals, connectivity, matchings, colorings, extremal problems, Ramsey theory, planar graphs, perfect graphs. Applications to operations research and the design of efficient algorithms.

Math Methods of Applied Sciences I

Review of linear algebra and ordinary differential equations, brief introduction to functions of a complex variable.

Numerical Linear Algebra

Introduction to the numerical solution of the classic problems of linear algebra including linear systems, least squares, SVD, eigenvalue problems. Crosslisted with CSE 6643.

Stochastic Processes I

Discrete time Markov chains, Poisson processes and renewal processes. Transient and limiting behavior. Average cost and utility measures of systems. Algorithm for computing performance measures. Modeling of inventories, and flows in manufacturing and computer networks. (Also listed as ISyE 6761)

Stochastic Processes in Finance I

Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed. Crosslisted with ISYE 6759.

Introduction to Numerical Methods for Partial Differential Equations

Introduction to the implementation and analysis of numerical algorithms for the numerical solution of the classic partial differential equations of science and engineering.

Industrial Mathematics I

Applied mathematics techniques to solve real-world problems. Topics include mathematical modeling, asymptotic analysis, differential equations and scientific computation. Prepares the student for MATH 6515. (1st of two courses)

Differential Topology

The differential topology of smooth manifolds.

Hilbert Spaces for Scientists and Engineers

Geometry, convergence, and structure of linear operators in infinite dimensional spaces. Applications to science and engineering, including integral equations and ordinary and partial differential equations.

The three course series MATH 6579, 6580, and 6221 is designed to provide a high level mathematical background for engineers and scientists.

This course is equivalent to MATH 6338. Students should not be able to obtain credit for both MATH 6580 and MATH 6338.

Pages

Subscribe to RSS - fa20