sp19

Spring 2019

Archived: 

Statistical Estimation

Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.

Probability II

Develops the probability basis requisite in modern statistical theories and stochastic processes. (2nd of two courses)

Algebra II

Graduate level linear and abstract algebra including rings, fields, modules, some algebraic number theory and Galois theory. (2nd of two courses)

Stochastic Processes II

Continuous time Markov chains. Uniformization, transient and limiting behavior. Brownian motion and martingales. Optional sampling and convergence. Modeling of inventories, finance, flows in manufacturing and computer networks. (Also listed as ISyE 6762)

Math Methods of Applied Sciences II

Review of vector calculus and and its application to partial differential equations.

Numerical Methods for Dynamical Systems

Approximation of the dynamical structure of a differential equation and preservation of dynamical structure under discretization.

Numerical Approximation Theory

Theoretical and computational aspects of polynomial, rational, trigonometric, spline and wavelet approximation.

Iterative Methods for Systems of Equations

Iterative methods for linear and nonlinear systems of equations including Jacobi, G-S, SOR, CG, multigrid, fixed point methods, Newton quasi-Newton, updating, gradient methods. Crosslisted with CSE 6644.

Numerical Methods in Finance

This course contains the basic numerical and simulation techniques for the pricing of derivative securities.

Differential Geometry I

Core topics in differential and Riemannian geometry including Lie groups, curvature, relations with topology.

Pages

Subscribe to RSS - sp19