This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. (2nd of two courses)
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.
Continuous time Markov chains. Uniformization, transient and limiting behavior. Brownian motion and martingales. Optional sampling and convergence. Modeling of inventories, finance, flows in manufacturing and computer networks. (Also listed as ISyE 6762)
Iterative methods for linear and nonlinear systems of equations including Jacobi, G-S, SOR, CG, multigrid, fixed point methods, Newton quasi-Newton, updating, gradient methods. Crosslisted with CSE 6644.