We study qualitative and quantitative properties of stationary/uniformly-rotating solutions of the 2D incompressible Euler equation.
- You are here:
- Home
We study qualitative and quantitative properties of stationary/uniformly-rotating solutions of the 2D incompressible Euler equation.
We consider the Benjamin Ono equation, modeling one-dimensional long interval waves in a stratified fluid, with a slowly-varying potential perturbation. Starting with near soliton initial data, we prove that the solution remains close to a soliton wave form, with parameters of position and scale evolving according to effective ODEs depending on the potential. The result is valid on a time-scale that is dynamically relevant, and highlights the effect of the perturbation.
The basic model of an isolated self-gravitating gaseous star is given by the gravitational Euler-Poisson system. For any value of the adiabatic index strictly between 1 and 4/3 we construct an infinite-dimensional family of collapsing solutions to the Euler-Poisson system whose density is in general space inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface in the Lagrangian coordinates. The leading order singular behaviour is driven by collapsing dust solutions. This is a joint work with Yan Guo (Brown) and Juhi Jang (USC).
We study whether all stationary solutions of 2D Euler equation must be radially symmetric, if the vorticity is compactly supported or has some decay at infinity. Our main results are the following:
(1) On the one hand, we are able to show that for any non-negative smooth stationary vorticity that is compactly supported (or has certain decay as |x|->infty), it must be radially symmetric up to a translation.
Abstract: In this talk, we consider the Cauchy problem of the N-dimensional incompressible viscoelastic fluids with N ≥ 2. It is shown that, in the low frequency part, this system possesses some dispersive properties derived from the one parameter group e∓itΛ. Based on this dispersive effect, we construct global solutions with large initial velocity concentrating on the low frequency part. Such kind of solution has never been seen before in the literature even for the classical incompressible Navier-Stokes equations.