We investigate the global time existence of smooth solutions for the Shigesada-Kawasaki-Teramoto system of cross-diffusion equations of two competing species in population dynamics. If there are self-diffusion in one species and no cross-diffusion in the other, we show that the system has a unique smooth solution for all time in bounded domains of any dimension.We obtain this result by deriving global $W^{1,p}$-estimates of Calder\'{o}n-Zygmund type for a class of nonlinear reaction-diffusion equations with self-diffusion.
- You are here:
- Home