Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

Gromov revolutionized the study of finitely generated groups by showing that an intrinsic metric on a group is intimately connected with the algebra of the group. This point of view has produced deep applications not only in group theory, but also topology, geometry, logic, and dynamical systems.

Series
Time
for
Location
Speaker
Organizer

The Torelli group is the subgroup of the mapping class group acting trivially on homology.  We will discuss some basic properties of the Torelli group and explain how to define it for surfaces with boundary.  We will also give some Torelli analogues of the Birman exact sequence.

Series
Time
for
Location
Speaker
Organizer

The smallest volume cusped hyperbolic 3-manifolds, the figure-eight knot complement and its sister, contain many immersed but no embedded closed totally geodesic surfaces. In this talk we discuss the existence or lack thereof of codimension-1 closed embedded totally geodesic submanifolds in minimal volume cusped hyperbolic 4-manifolds. This talk is based on joint work with Alan Reid.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

The satellite construction, which associates to a pattern knot P in a solid torus and a companion knot K in the 3-sphere the so-called satellite knot P(K), features prominently in knot theory and low-dimensional topology.  Besides the intuition that P(K) is “more complicated” than either P or K, one can attempt to quantify how the complexity of a knot changes under the satellite operation. In this talk, I’ll discuss how several notions of complexity based on the minimal genus of an embedded surface change under satelliting.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

The goal of this talk is to explain the sense in which the natural algebraic structure of the singular chains on a path-connected space determines its fundamental group functorially. This new basic piece about the algebraic topology of spaces, which tells us that the fundamental group may be determined from homological data, has several interesting and deep implications.

Series
Time
for
Location
Speaker
Organizer

The classical isoperimetric inequality states that in Euclidean space spheres provide unique enclosures of least perimeter for any given volume. In this talk we discuss how this inequality may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, as conjectured by Aubin, Gromov, Burago, and Zalgaller in 1970s and 80s.

Series
Time
for
Location
Speaker
Organizer

A discussion of Khovanov-Lee homology, how to extract some invariants of braid closures from the homology theory, and motivation for studying both the homology theory and the invariants.

Series
Time
for
Location
Speaker
Organizer

Annular Rasmussen invariants are invariants of braid closures which generalize the Rasmussen s invariant and come from an integer bifiltration on Khovanov-Lee homology. In this talk we will explain some connections between the annular Rasmussen invariants and other topological information. Additionally we will state theorems about restrictions on the possible values of annular Rasmussen invariants and a computation of the invariants for all 3-braid closures, or conjugacy classes of 3-braids. Time permitting, we will sketch some proofs.

Pages

Subscribe to RSS - Geometry and Topology