Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
In this series of talks we will show that every closed oriented three manifold is a branched cover over the three sphere, with some additional properties. In the first talk we will discuss some examples of branched coverings of surfaces and three manifolds, and a classical result of Alexander, which states that any closed oriented combinatorial manifold is always a branched cover over the sphere.
Series
Time
for
Location
Speaker
Organizer
In this talk we associate a combinatorial dg-algebra to a cubic planar graph. This algebra is defined by counting binary sequences, which we introduce, and we shall provide explicit computations. From there, we study the Legendrian surfaces behind these combinatorial constructions, including Legendrian surgeries and the count of Morse flow trees, and discuss the proof of the correspondence between augmentations and constructible sheaves for this class of Legendrians.
Series
Time
for
Location
Speaker
Organizer
I will describe a diagrammatic classification of (1,1) knots in S^3 and lens spaces that admit non-trivial L-space surgeries. A corollary of the classification is that 1-bridge braids in these manifolds admit non-trivial L-space surgeries. This is joint work with Sam Lewallen and Faramarz Vafaee.
Series
Time
for
Location
Speaker
Organizer
Following up on the previous series of talks we will show how to construct Lagrangian Floer homology and discuss it properties.
Series
Time
for
Location
Speaker
Organizer
Much of what is known about automorphisms of free groups is given by analogy to results on mapping class groups. One desirable result is the celebrated Nielson-Thurston classification of the mapping class group into reducible, periodic, or pseudo Anosov homeomorphisms. We will discuss attempts at analogous results for free group automorphisms.
Series
Time
for
Location
Speaker
Organizer
Following up on the previous series of talks we will show how to construct Lagrangian Floer homology and discuss it properties.
Series
Time
for
Location
Speaker
Organizer
This is joint work with Mike Sullivan. We consider a Legendrian surface L in R5 or more generally in the 1-jet space of a surface. Such a Legendrian can be conveniently presented via its front projection which is a surface in R3 that is immersed except for certain standard singularities. We associate a differential graded algebra (DGA) to L by starting with a cellular decomposition of the base projection to R2 of L that contains the projection of the singular set of L in its 1-skeleton.
Series
Time
for
Location
Speaker
Organizer
There is no general h-principle for Legendrian embeddings in contact manifolds. In dimension 3, however, Legendrian knots in the complement of an overtwisted disc, which are called loose, satisfy an h-principle. We will discuss the high dimensional analog of loose knots.
Series
Time
for
Location
Speaker
Organizer
There is no general h-principle for Legendrian embeddings in contact manifolds. In dimension 3, however, Legendrian knots in the complement of an overtwisted disc, which are called loose, satisfy an h-principle. We will discuss the high dimensional analog of loose knots.
Series
Time
for
Location
Speaker
Organizer

Pages

Subscribe to RSS - Geometry and Topology