Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
The set of knots up to a four-dimensional equivalence relation can be given the structure of a group, called the (smooth) knot concordance group. We will discuss how to compute concordance invariants using Heegaard Floer homology. We will then introduce the idea of a "reduced" knot Floer complex, see how it can be used to simplify computations, and give examples of how it can be helpful in distinguishing knots which are not concordant.
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
Given a closed surface S_g of genus g, a mapping class f is said to be pseudo-Anosov if it preserves a pair of transverse measured foliations such that one is expanding and the other one is contracting by a number $\lambda$. The number $\lambda$ is called a stretch factor (or dilatation) of f. Thurston showed that a stretch factor is an algebraic integer with degree bounded above by 6g-6. However, little is known about which degrees occur.
Series
Time
for
Location
Speaker
Organizer
Heegaard Floer theory consists of a set of invariants of three-and four-dimensional manifolds. Three-manifolds with the simplest HeegaardFloer invariants are called L-spaces and the name stems from the fact thatlens spaces are L-spaces. The primary focus of this talk will be on thequestion of which knots in the three-sphere admit L-space surgeries. Wewill also discuss about possible characterizations of L-spaces that do notreference Heegaard Floer homology.
Series
Time
for
Location
Speaker
Organizer
An introduction for non-experts on real and finite Euler sums, also known as multiple zeta values.
Series
Time
for
Location
Speaker
Organizer
The Ptolemy coordinates are efficient coordinates for computingboundary-unipotent representations of a 3-manifold group in SL(2,C). Wedefine a slightly modified version which allows you to computerepresentations that are not necessarily boundary-unipotent. This givesrise to a new algorithm for computing the A-polynomial.
Series
Time
for
Location
Speaker
Organizer
We show that each (p,q)-torus knot in the 3-sphere is determined by its A-polynomial and its knot Floer homology. This is joint work with Yi Ni.
Series
Time
for
Location
Speaker
Organizer
In this talk, we will discuss a result due to Gabai which states that a minimal genus Seifert surface for a knot in 3-sphere can be realized as a leaf of a taut foliation of the knot complement. We will give a fairly detailed outline of the proof. In the process, we will learn how to construct taut foliations on knot complements.
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
The question of what conditions guarantee that a symplectic$S^1$ action is Hamiltonian has been studied for many years. Sue Tolmanand Jonathon Weitsman proved that if the action is semifree and has anon-empty set of isolated fixed points then the action is Hamiltonian.Furthermore, Cho, Hwang, and Suh proved in the 6-dimensional case that ifwe have $b_2^+=1$ at a reduced space at a regular level $\lambda$ of thecircle valued moment map, then the action is Hamiltonian.

Pages

Subscribe to RSS - Geometry and Topology