Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
One of the most outstanding problems in differential geometry is concerned with flexibility of closed surface in Euclidean 3-space: Is it possible to continuously deform a smooth closed surface without changing its intrinsic metric structure? In this talk I will give a quick survey of known results in this area, which is primarily concerned with convex surfaces, and outline a program for studying the general case.
Series
Time
for
Location
Speaker
Organizer
We will give an overview of open book foliation method by emphasizing the aspect that it is a generalization of Birman-Menasco's braid foliation theory. We explain how surfaces in open book reflects topology and (contact) geometry of underlying 3-manifolds, and will give several applications. This talk is based on joint work with Keiko Kawamuro.
Series
Time
for
Location
Speaker
Organizer
The talk will be about manifolds covered by the Euclidean space yet admitting no complete metric of nonpositive curvature.
Series
Time
for
Location
Speaker
Organizer
In this talk we introduce the notions of the contact angle and of the holomorphic angle for immersed surfaces in $S^{2n+1}$. We deduce formulas for the Laplacian and for the Gaussian curvature, and we will classify minimal surfaces in $S^5$ with the two angles constant. This classification gives a 2-parameter family of minimal flat tori of $S^5$. Also, we will give an alternative proof of the classification of minimal Legendrian surfaces in $S^5$ with constant Gaussian curvature. Finally, we will show some remarks and generalizations of this classification.
Series
Time
for
Location
Speaker
Organizer
In the talk we will start from examples of open surfaces, such as the complex plane minus a Cantor set, review their classification, and then move to higher dimensions, where we discuss ends of manifolds in the topological setting, and finally in the geometric setting under the assumption of nonpositive curvature.
Series
Time
for
Location
Speaker
Organizer
The fractional Dehn twist coefficient (FDTC), defined by Honda-Kazez-Matic, is an invariant of mapping classes. In this talk we study properties of FDTC by using open book foliation method, then obtain results in geometry and contact geometry of the open-book-manifold of a mapping class. This is joint work with Tetsuya Ito.
Series
Time
for
Location
Speaker
Organizer
By a classical result of Eliashberg, contact manifolds in dimension 3 come in two flavors: tight (rigid) and overtwisted (flexible). Characterized by the presence of an "overtwisted disk", the overtwisted contact structures form a class where isotopy and homotopy classifications are equivalent.In higher dimensions, a class of flexible contact structures is yet to be found. However, some attempts to generalize the notion of an overtwisted disk have been made. One such object is a "plastikstufe" introduced by Niederkruger following some ideas of Gromov.
Series
Time
for
Location
Speaker
Organizer
We will investigate a method of "seeing" properties of four dimensional symplectic spaces by looking at two dimensional pictures. We will see how to calculate the Euler characteristic, identify embedded surfaces, see intersection numbers, and how to see induced contact structures on the boundary of these manifolds.
Series
Time
for
Location
Speaker
Organizer
We will introduce characteristic classes of surface bundles over surfaces. This will be a slower version of a talk I gave over the summer. The goal is to get to some of the recent papers on the subject.
Series
Time
for
Location
Speaker
Organizer
It is a theorem of Bass, Lazard, and Serre, and, independently, Mennicke, that the special linear group SL(n,Z) enjoys the congruence subgroup property when n is at least 3. This property is most quickly described by saying that the profinite completion of the special linear group injects into the special linear group of the profinite completion of Z. There is a natural analog of this property for mapping class groups of surfaces.

Pages

Subscribe to RSS - Geometry and Topology