Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
We show that every smooth closed curve C immersed in Euclidean 3-space satisfies the sharp inequality 2(P+I)+V>5 which relates the numbers P of pairs of parallel tangent lines, I of inflections (or points of vanishing curvature), and V of vertices (or points of vanishing torsion) of C. The proof, which employs curve shortening flow, is based on a corresponding inequality for the numbers of double points, singularites, and inflections of closed contractible curves in the real projective plane which intersect every closed geodesic.
Series
Time
for
Location
Speaker
Organizer
In this talk we will outline proof due to Plameneveskaya and Van-Horn Morris that every virtually overtwisted contact structure on L(p,1) has a unique Stein filling. We will give a much simplified proof of this result. In addition, we will talk about classifying Stein fillings of ($L(p,q), \xi_{std})$ using only mapping class group basics.
Series
Time
for
Location
Speaker
Organizer
Continuation of last week's talk
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
In this talk we will outline proof due to Plameneveskaya and Van-Horn Morris that every virtually overtwisted contact structure on L(p,1) has a unique Stein filling. We will give a much simplified proof of this result. In addition, we will talk about classifying Stein fillings of ($L(p,q), \xi_{std})$ using only mapping class group basics.
Series
Time
for
Location
Speaker
Organizer
For a genus g surface with s > 0 punctures and 2g+s > 2, decorated Teichmuller space (DTeich) is a trivial R_+^s-bundle over the usual Teichmuller space, where the fiber corresponds to families of horocycles peripheral to each puncture. As proved by R. Penner, DTeich admits a mapping class group-invariant cell decomposition, which then descends to a cell decomposition of Riemann's moduli space. In this talk we introduce a new cellular bordification of DTeich which is also MCG-invariant, namely the space of filtered screens.
Series
Time
for
Location
Speaker
Organizer
This series of talks will be an introduction to the use of holomorphic curves in geometry and topology. I will begin by stating several spectacular results due to Gromov, McDuff, Eliashberg and others, and then discussing why, from a topological perspective, holomorphic curves are important. I will then proceed to sketch the proofs of the previously stated theorems. If there is interest I will continue with some of the analytic and gometric details of the proof and/or discuss Floer homology (ultimately leading to Heegaard-Floer theory and contact homology).
Series
Time
for
Location
Speaker
Organizer
Rob Kirby and I have been thinking for a while now about stable maps to 2-manifolds, which we call "Morse 2-functions", to stress the analogy with standard Morse theory, which studies stable maps to 1-manifolds. In this talk I will focus on the extent to which we can extend that analogy to the way in which handle decompositions combinatorialize Morse functions, especially in low dimensions. By drawing the images of attaching maps and some extra data, one describes the total space of a Morse function and the Morse function, up to diffeomorphism.
Series
Time
for
Location
Speaker
Organizer
This series of talks will be an introduction to the use of holomorphic curves in geometry and topology. I will begin by stating several spectacular results due to Gromov, McDuff, Eliashberg and others, and then discussing why, from a topological perspective, holomorphic curves are important. I will then proceed to sketch the proofs of the previously stated theorems. If there is interest I will continue with some of the analytic and gometric details of the proof and/or discuss Floer homology (ultimately leading to Heegaard-Floer theory and contact homology).
Series
Time
for
Location
Speaker
Organizer
I will describe a new way to depict any smooth, closed oriented 4-manifold using a surface decorated with circles, along with a set of moves that relate any pair of such depictions.

Pages

Subscribe to RSS - Geometry and Topology