Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
I will discuss moduli spaces of Riemannian metrics with various curvature conditions, and then focus on the case of nonnegative sectional curvature.
Series
Time
for
Location
Speaker
Organizer
I will review results on the structure of open nonnegatively curved manifolds due to Cheeger-Gromoll, Perelman, and Wilking.
Series
Time
for
Location
Speaker
Organizer
The Southeast Geometry Seminar is a series of semiannual one-day events focusing on geometric analysis. These events are hosted in rotation by the following institutions: The University of Alabama at Birmingham; The Georgia Institute of Technology; Emory University; The University of Tennessee Knoxville. The presentations will include topics on geometric analysis, and related fields, such as partial differential equations, general relativity, and geometric topology.
Series
Time
for
Location
Speaker
Organizer
Khovanov homology is an invariant of oriented links, that is defined as the cohomology of a chain complex built from the cube of resolutions of a link diagram. Discovered in the late 90s, it is the first of, and inspiration for, a series of "categorifications" of knot invariants. In this first of two one-hour talks, I'll give some background on categorification and the Jones polynomial, defineKhovanov homology, work through some examples, and give a portion of the proof of Reidemeister invariance.
Series
Time
for
Location
Speaker
Organizer
I will explain another approach to the conjecture and in particular, study it for 2-bridge knots. I will give the proof of the conjecture for a very large class of 2-bridge knots which includes twist knots and many more (due to Le). Finally, I will mention a little bit about the weak version of the conjecture as well as some relating problems.
Series
Time
for
Location
Speaker
Organizer
For every quantum group one can define two invariants of 3-manifolds:the WRT invariant and the Hennings invariant. We will show that theseinvariants are equivalentfor quantum sl_2 when restricted to the rational homology 3-spheres.This relation can be used to solve the integrality problem of the WRT invariant.We will also show that the Hennings invariant produces integral TQFTsin a more natural way than the WRT invariant.
Series
Time
for
Location
Speaker
Organizer
I will introduce the AJ conjecture (by Garoufalidis) which relates the A-polynomial and the colored Jones polynomial of a knot in the 3-sphere. Then I will verify it for the trefoil and the figure 8 knots (due to Garoufalidis) and torus knots (due to Hikami) by explicit calculations.
Series
Time
for
Location
Speaker
Organizer
After, briefly, recalling the definition of contact homology, a powerful but somewhat intractable and still largely unexplored invariant of Legendrian knots in contact structures, I will discuss various ways of constructing more tractable and computable invariants from it. In particular I will discuss linearizations, products, massy products, A_\infty structures and terms in a spectral sequence. I will also show examples that demonstrate some of these invariants are quite powerful.
Series
Time
for
Location
Speaker
Organizer
Exact Topic TBA. Talk will be a general survery of branched covers, possibly including covers from the algebraic geometry perspective. In addition we will look at branched coveres in higher dimensions, in the contact world, and my current research interests. This talk will be a general survery, so very little background is assumed.
Series
Time
for
Location
Speaker
Organizer
We prove that convex hypersurfaces M in R^n which are level sets of functions f: R^n --> R are C^1-regular if f has a nonzero partial derivative of some order at each point of M. Furthermore, applying this result, we show that if f is algebraic and M is homeomorphic to R^(n-1), then M is an entire graph, i.e., there exists a line L in R^n such that M intersects every line parallel L at precisely one point. Finally we will give a number of examples to show that these results are sharp.

Pages

Subscribe to RSS - Geometry and Topology