Seminars and Colloquia Schedule

Tropical convexity, linear systems on metric graphs, and a generalized notion of reduced divisors

Series
Algebra Seminar
Time
Monday, November 21, 2011 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ye LuoGeorgia Tech
Metric graphs arise naturally in tropical tropical geometry and Berkovich geometry. Recent efforts have extend conventional notion of divisors and linear systems on algebraic curves to finite graphs and metric graphs (tropical curves). Reduced divisors are introduced as an essential tool in proving graph-theoretic Riemann-Roch. In short, a q-reduced divisor is the unique divisor in a linear system with respect to a point q in the graph. In this talk, I will show how tropical convexity is related to linear systems on metric graphs, and define a canonical metric on the linear systems. In addition, I will introduce a generalized notion of reduced divisors, which are defined with respect to any effective divisor as in comparison a single point (effective divisor of degree one) in the conventional case.

On the stability of Prandtl boundary layers and the inviscid limit of the Navier-Stokes equations.

Series
PDE Seminar
Time
Tuesday, November 22, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Toan T. NguyenBrown University
In fluid dynamics, one of the most classical issues is to understand the dynamics of viscous fluid flows past solid bodies (e.g., aircrafts, ships, etc...), especially in the regime of very high Reynolds numbers (or small viscosity). Boundary layers are typically formed in a thin layer near the boundary. In this talk, I shall present various ill-posedness results on the classical Prandtl equation, and discuss the relevance of boundary-layer expansions and the vanishing viscosity limit problem of the Navier-Stokes equations. I will also discuss viscosity effects in destabilizing stable inviscid flows.