Wednesday, October 12, 2016 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Justin Lanier – Department of Mathematics, Georgia Institute of Technology – jlanier8@gatech.edu
Refreshments will be provided before the seminar.
It's important to have a personal academic webpage—one that is up-to-date, informative, and easy to navigate. This workshop will be a hands-on guide to making an academic webpage and hosting it on the School of Math website. Webpage templates will be provided. Please bring a laptop if you have one, as well as a photograph of yourself for your new website. Come and get the help you need to create a great webpage!
Thursday, October 13, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ernie Croot – Georgia Tech
In this talk I will discuss some new applications of the
polynomial method to some classical problems in combinatorics, in
particular the Cap-Set Problem. The Cap-Set Problem is to determine the
size of the largest subset A of F_p^n having no three-term arithmetic
progressions, which are triples of vectors x,y,z satisfying x+y=2z. I will
discuss an analogue of this problem for Z_4^n and the recent progress on
it due to myself, Seva Lev and Peter Pach; and will discuss the work of
Ellenberg and Gijswijt, and of Tao, on the F_p^n version (the original
context of the problem).
Thursday, October 13, 2016 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pavel Skums – Department of Computer Science, Georgia State University
Lately there was a growing interest in studying
self-similarity and fractal
properties of graphs, which is largely inspired by applications in
biology,
sociology and chemistry. Such studies often employ statistical physics
methods that borrow some ideas from graph theory and general topology, but
are not intended to approach the problems under consideration in a
rigorous
mathematical way. To the best of our knowledge, a rigorous combinatorial
theory that defines and studies graph-theoretical analogues of topological
fractals still has not been developed.
In this paper we introduce and study discrete analogues of Lebesgue and
Hausdorff dimensions for graphs. It turned out that they are
closely related to well-known graph characteristics such as rank dimension
and Prague (or Nesetril-Rodl) dimension. It allowed us to formally define
fractal graphs and establish fractality of some graph classes. We show,
how
Hausdorff dimension of graphs is related to their Kolmogorov complexity.
We
also demonstrate fruitfulness of this interdisciplinary approach by
discover a novel property of general compact metric spaces using ideas
from
hypergraphs theory and by proving an estimation for Prague dimension of
almost all graphs using methods from algorithmic information theory.
Friday, October 14, 2016 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matthew Fahrbach – College of Computing, Georgia Tech
Graded posets are partially ordered sets equipped with a unique rank
function that respects the partial order and such that neighboring
elements in the Hasse diagram have ranks that differ by one. We
frequently find them throughout combinatorics, including the canonical
partial order on Young diagrams and plane partitions, where their
respective rank functions are the area and volume under the
configuration. We ask when it is possible to efficiently sample elements
with a fixed rank in a graded poset. We show that for certain classes
of posets, a biased Markov chain that connects elements in the Hasse
diagram allows us to approximately generate samples from any fixed rank
in expected polynomial time. While varying a bias parameter to increase
the likelihood of a sample of a desired size is common in statistical
physics, one typically needs properties such as log-concavity in the
number of elements of each size to generate desired samples with
sufficiently high probability. Here we do not even require unimodality
in order to guarantee that the algorithm succeeds in generating samples
of the desired rank efficiently. This joint work with Prateek Bhakta,
Ben Cousins, and Dana Randall will appear at SODA 2017.
Friday, October 14, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jennifer Hom – Georgia Tech
The knot concordance group consists of knots in the three-sphere modulo the equivalence relation of smooth concordance. We will discuss two concordance invariants coming from knot Floer homology: tau and epsilon.
Friday, October 14, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 170
Speaker
Adrián P. Bustamante – Georgia Tech
In the first part of the talk(s) we are going to present a way to study numerically the complex domains of invariant Tori for the standar map. The numerical method is based on Padé approximants. For this part we are going to follow the work of C. Falcolini and R. de la LLave.In the second part we are going to present how the numerical method, developed earlier, can be used to study the complex domains of analyticity of invariant KAM Tori for the dissipative standar map. This part is work in progress jointly with R. Calleja.