Seminars and Colloquia Schedule

Polynomial functors and algebraic K-theory

Series
Geometry Topology Seminar
Time
Monday, December 5, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Akhil MathewHarvard University
The Grothendieck group K_0 of a commutative ring is well-known to be a \lambda-ring: although the exterior powers are non-additive, they induce maps on K_0 satisfying various universal identities. The \lambda-operations are known to give homomorphisms on higher K-groups. In joint work in progress with Barwick, Glasman, and Nikolaus, we give a general framework for such operations. Namely, we show that the K-theory space is naturally functorial with respect to polynomial functors, and describe a universal property of the extended K-theory functor. This extends an earlier algebraic result of Dold for K_0.

Conductors and minimal discriminants of hyperelliptic curves with rational Weierstrass points

Series
Algebra Seminar
Time
Monday, December 5, 2016 - 16:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Padma SrinivasanGeorgia Tech
Conductors and minimal discriminants are two measures of degeneracy of the singular fiber in a family of hyperelliptic curves. In the case of elliptic curves, the Ogg-Saito formula shows that (the negative of) the Artin conductor equals the minimal discriminant. In the case of genus two curves, equality no longer holds in general, but the two invariants are related by an inequality. We investigate the relation between these two invariants for hyperelliptic curves of arbitrary genus.

The Cubical Route to Understanding Groups

Series
School of Mathematics Colloquium
Time
Friday, December 9, 2016 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel WiseMcGill University
Cube complexes have come to play an increasingly central role within geometric group theory, as their connection to right-angled Artin groups provides a powerful combinatorial bridge between geometry and algebra. This talk will introduce nonpositively curved cube complexes, and then describe the developments that have recently culminated in the resolution of the virtual Haken conjecture for 3-manifolds, and simultaneously dramatically extended our understanding of many infinite groups.