Seminars and Colloquia Schedule

Characterizing Smoothness of Quotients

Series
Job Candidate Talk
Time
Monday, February 10, 2020 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matthew SatrianoUniversity of Waterloo

Given an action of a finite group $G$ on a complex vector space $V$, the Chevalley-Shephard-Todd Theorem gives a beautiful characterization for when the quotient variety $V/G$ is smooth. In his 1986 ICM address, Popov asked whether this criterion could be extended to the case of Lie groups. I will discuss my contributions to this problem and some intriguing questions in combinatorics that this raises. This is based on joint work with Dan Edidin.

On mixing properties of infinite measure preserving systems

Series
CDSNS Colloquium
Time
Monday, February 10, 2020 - 11:15 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Dmitry DolgopyatUniversity of Maryland

We present several new results concerning mixing properties of
hyperbolic systems preserving an infinite measure making a particular
emphasis on mixing for extended systems. This talk is based on a joint
work with Peter Nandori.

Asymptotic-preserving and positivity-preserving numerical methods for a class of stiff kinetic equations

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 10, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Jingwei HuPurdue

Kinetic equations play an important role in multiscale modeling hierarchy. It serves as a basic building block that connects the microscopic particle models and macroscopic continuum models. Numerically approximating kinetic equations presents several difficulties: 1) high dimensionality (the equation is in phase space); 2) nonlinearity and stiffness of the collision/interaction terms; 3) positivity of the solution (the unknown is a probability density function); 4) consistency to the limiting fluid models; etc. I will start with a brief overview of the kinetic equations including the Boltzmann equation and the Fokker-Planck equation, and then discuss in particular our recent effort of constructing efficient and robust numerical methods for these equations, overcoming some of the aforementioned difficulties. This is joint work with Ruiwen Shu (University of Maryland).

Joint UGA-GT Topology Seminar at GT: Homotopy invariants of homology cobordism and knot concordance

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kent OrrIndiana University
Modern homotopy invariants of links derive from Gauss’ work on linking numbers.  Many modern examples have arisen following Milnor’s early work.  I will define and investigate a `universal' homotopy invariant of homology cobordism classes of orientable 3-manifolds.  Time permitting (unlikely,) the resulting equivalence classes yield further invariants using filtrations, and classical and von Neumann signatures.  Primary focus will be given to defining these
invariants, and the tools essential to their definition.

Joint UGA-GT Topology Seminar at GT: Brieskorn spheres bounding rational balls

Series
Geometry Topology Seminar
Time
Monday, February 10, 2020 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kyle LarsonUGA

Fintushel and Stern showed that the Brieskorn sphere Σ(2, 3, 7) bounds a rational homology ball, while its non-trivial Rokhlin invariant obstructs it from bounding an integral homology ball. It is known that their argument can be modified to show that the figure-eight knot is rationally slice, and we use this fact to provide the first additional examples of Brieskorn spheres that bound rational homology balls but not integral homology balls, including two infinite families. This is joint work with Selman Akbulut.

Quasiperiodic Schrodinger operators: nonperturbative analysis of small denominators, universal self-similarity, and critical phenomena.

Series
Job Candidate Talk
Time
Tuesday, February 11, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
TBA
Speaker
Svetlana JitomirskayaUCI

We will give a brief introduction to the spectral theory of ergodic operators. Then we discuss several remarkable spectral phenomena present in the class of quasiperiodic operators, as well as the nonperturbative approach to small denominator problems that has been behind much of the related progress.  In particular, we will talk about the almost Mathieu (aka Harper's) operator - a model heavily studied in physics literature and linked to several Nobel prizes (in addition to one Fields medal). We will describe several results on this model that resolve some long-standing conjectures.

Optimal measures for three-point energies and semidefinite programming

Series
Analysis Seminar
Time
Wednesday, February 12, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josiah ParkGeorgia Tech

Given a potential function of three vector arguments, $f(x,y,z)$, which is $O(n)$-invariant, $f(Qx,Qy,Qz)=f(x,y,z)$ for all $Q$ orthogonal, we use semidefinite programming bounds to determine optimizing probability measures for interaction energies of the form $\int\int\int f(x,y,z) d\mu(x)d\mu(y)d\mu(z)$ over the sphere. This approach builds on previous use of such bounds in the discrete setting by Bachoc-Vallentin, Cohn-Woo, and Musin, and is successful for kernels which can be shown to have expansions in a particular basis, for instance certain symmetric polynomials in inner products $u=\langle x,y \rangle$, $v=\langle y,z\rangle$, and $t=\langle z, x \rangle$. For other kernels we pose conjectures on the behavior of optimizers, partially inferred through numerical studies.

The Frohman-Kania-Bartoszynska invariant is the 3D index

Series
Geometry Topology Seminar
Time
Wednesday, February 12, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
S. GaroufalidisSUSTECH and MPI Bonn
We prove that a power series invariant of suitable ideal triangulations, defined by Frohman-Kania-Bartoszynska coincides with the power series invariant of Dimofte-Gaiotto-Gukov known as the 3D index. In partucular, we deduce that the FKB invariant is topological, and that the tetrahedron weight of the 3D index is a limit of quantum 6j symbols. Joint work with Roland van der Veen.

Introduction to algebraic graph theory

Series
Graph Theory Working Seminar
Time
Wednesday, February 12, 2020 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
James AndersonGeorgia Tech
In this introductory talk, we explore the first 5 chapters of Biggs's Algebraic Graph Theory. We discuss the properties of the adjacency matrix  of graph G, as well as the relationship between the incidence matrix of G and the cycle space and cut space. We also include several other small results. This talk will be followed by later talks in the semester continuing from Biggs's book.
 

Replica Symmetry Breaking for Random Regular NAESAT

Series
School of Mathematics Colloquium
Time
Thursday, February 13, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Allan SlyPrinceton University

Ideas from physics have predicted a number of important properties of random constraint satisfaction problems such as the satisfiability threshold and the free energy (the exponential growth rate of the number of solutions).  Another prediction is the condensation regime where most of the solutions are contained in a small number of clusters and the overlap of two random solutions is concentrated on two points.  We establish this phenomena for the random regular NAESAT model.

Clustering a Mixture of Gaussians

Series
ACO Student Seminar
Time
Friday, February 14, 2020 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
He JiaCS, Georgia Tech

We give an efficient algorithm for robustly clustering of a mixture of two arbitrary Gaussians, a central open problem in the theory of computationally efficient robust estimation, assuming only that the the means of the component Gaussian are well-separated or their covariances are well-separated. Our algorithm and analysis extend naturally to robustly clustering mixtures of well-separated logconcave distributions. The mean separation required is close to the smallest possible to guarantee that most of the measure of the component Gaussians can be separated by some hyperplane (for covariances, it is the same condition in the second degree polynomial kernel). Our main tools are a new identifiability criterion based on isotropic position, and a corresponding Sum-of-Squares convex programming relaxation.