Seminars and Colloquia by Series

Branched covers and SU(2)-representations

Series
Geometry Topology Seminar
Time
Monday, February 10, 2025 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Juanita Pinzon-CaicedoNotre Dame

The fundamental group is one of the most powerful invariants to distinguish closed three-manifolds, and the existence of non-trivial homomorphisms $\pi_1(M)\to SU(2)$ is a great way of measuring the non-triviality of a three-manifold $M$. It is known that if an integer homology 3-sphere is either Seifert fibered or toroidal, then irreducible representations do exist. In contrast, the existence of SU(2)-representations for hyperbolic homology spheres has not been completely established. With this as motivation, I will talk about partial progress made in the case of hyperbolic homology spheres realized as branched covers. This is joint work with Sudipta Ghosh and Zhenkun Li.

Is the geography of Heegaard Floer homology restricted or is the L-space conjecture false?

Series
Geometry Topology Seminar
Time
Monday, February 3, 2025 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Antonio AlfieriUGA

In a recent note Francesco Lin showed that if a rational homology sphere Y admits a taut foliation then the Heegaard Floer module HF^-(Y) contains a copy of F[U]/U as a summand. This implies that either the L-space conjecture is false or that Heegaard Floer homology satisfies a geography restriction. In a recent paper in collaboration with Fraser Binns we verified that Lin's geography restriction holds for a wide class of rational homology spheres. I shall discuss our argument, and advance the hypothesis that the Heegaard Floer module HF^-(Y) may satisfy a stronger geography restriction than the one suggested by Lin’s theorem.

Symmetries of Legendrian links and their exact Lagrangian fillings

Series
Geometry Topology Seminar
Time
Monday, January 27, 2025 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
James HughesDuke University

Given a Legendrian link L in the contact 3-sphere, one can hope to classify the set of exact Lagrangian fillings of L, i.e. exact Lagrangian surfaces in the symplectic 4-ball with boundary equal to L. Much of the recent progress towards this classification relies on establishing a connection between sheaf-theoretic invariants of Legendrians and cluster algebras. In this talk, I will describe this connection and how these invariants behave with respect to certain symmetries of Legendrian links and their fillings. Parts of this are joint work with Agniva Roy.

Strongly exceptional Legendrian connected sum of two Hopf links

Series
Geometry Topology Seminar
Time
Monday, January 13, 2025 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Youlin LiShanghai Jiao Tong University

In this talk, I will present a complete coarse classification of strongly exceptional Legendrian realizations of the connected sum of two Hopf links in contact 3-spheres. This is joint work with Sinem Onaran.

Dehn twist and smooth mapping class group of 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, December 9, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anubhav MukherjeePrinceton

In this talk, I will present recent advancements in the study of smooth mapping class groups of 4-manifolds. Our work focuses on diffeomorphisms arising from Dehn twists along embedded 3-manifolds and their interaction with Seiberg-Witten theory. These investigations have led to intriguing applications across several areas, including symplectic geometry (related to Torelli symplectomorphisms), algebraic geometry (concerning the monodromy of singularities), and low-dimensional topology (involving exotic diffeomorphisms). This is collaborative work with Hokuto Konno, Jianfeng Lin, and Juan Munoz-Echaniz.

Bounding non-integral non-characterizing Dehn surgeries

Series
Geometry Topology Seminar
Time
Monday, December 2, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patricia SoryaUQAM

A Dehn surgery slope p/q is said to be characterizing for a knot K if the homeomorphism type of the p/q-Dehn surgery along K determines the knot up to isotopy. I discuss advances towards a conjecture of McCoy that states that for any knot, all but at most finitely many non-integral slopes are characterizing.

Prym Representations and Twisted Cohomology of the Mapping Class Group with Level Structures

Series
Geometry Topology Seminar
Time
Monday, November 25, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xiyan ZhongNotre Dame

The Prym representations of the mapping class group are an important family of representations that come from abelian covers of a surface. They are defined on the level-ℓ mapping class group, which is a fundamental finite-index subgroup of the mapping class group.  One consequence of our work is that the Prym representations are infinitesimally rigid, i.e. they can not be deformed. We prove this infinitesimal rigidity by calculating the twisted cohomology of the level-ℓ mapping class group with coefficients in the Prym representation, and more generally in the r-tensor powers of the Prym representation. Our results also show that when r ≥ 2, this twisted cohomology does not satisfy cohomological stability, i.e. it depends on the genus g.

Spinal open books and symplectic fillings with exotic fibers

Series
Geometry Topology Seminar
Time
Monday, November 18, 2024 - 16:30 for 1 hour (actually 50 minutes)
Location
University Of Georgia
Speaker
Luya Wang Institute for Advanced Study

Pseudoholomorphic curves are pivotal in establishing uniqueness and finiteness results in the classification of symplectic manifolds. In a series of works, Wendl used punctured pseudoholomorphic foliations to classify symplectic fillings of contact three-manifolds supported by planar open books, turning it into a problem about monodromy factorizations. In a joint work with Hyunki Min and Agniva Roy, we build on the works of Lisi--Van Horn-Morris--Wendl in using spinal open books to further delve into the classification problem of symplectic fillings of higher genus open books. In particular, we provide the local model of the mysterious "exotic fibers" in a generalized version of Lefschetz fibrations, which captures a natural type of singularity at infinity. We will give some applications to classifying symplectic fillings via this new phenomenon.

Contact invariants in bordered Floer homology

Series
Geometry Topology Seminar
Time
Monday, November 18, 2024 - 15:00 for 1 hour (actually 50 minutes)
Location
University Of Georgia
Speaker
Hyunki MinUCLA

In this talk, we introduce contact invariants in bordered sutured Floer homology. Given a contact 3-manifold with convex boundary, we apply a result of Zarev to derive contact invariants in the bordered sutured modules BSA and BSD. We show that these invariants satisfy a pairing theorem, which is a bordered extension of the Honda-Kazez-Matic gluing map for sutured Floer homology. We also show that there is a correspondence between certain A-infinity operations in bordered modules and bypass attachment maps in sutured Floer homology. As an application, we characterize the Stipsicz-Vertesi map in terms of A-infinity action on CFA. If time permits, we will further discuss applications to contact surgery.

Concave foliated flag structures and Hitchin representations in SL(3,R) by Max Riestenberg

Series
Geometry Topology Seminar
Time
Monday, November 11, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Max RiestenbergMax Plank Institute for Mathematics in the Sciences

In 1992 Hitchin discovered distinguished components of the PSL(d,R) character variety for closed surface groups pi_1S and asked for an interpretation of those components in terms of geometric structures. Soon after, Choi-Goldman identified the SL(3,R)-Hitchin component with the space of convex projective structures on S. In 2008, Guichard-Wienhard identified the PSL(4,R)-Hitchin component with foliated projective structures on the unit tangent bundle T^1S. The case d \ge 5 remains open, and compels one to move beyond projective geometry to flag geometry. In joint work with Alex Nolte, we obtain a new description of the SL(3,R)-Hitchin component in terms of concave foliated flag structures on T^1S. 

Pages