A sharp Schroedinger maximal estimate in two dimensions
- Series
- Analysis Seminar
- Time
- Wednesday, February 28, 2018 - 13:55 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Xiumin Du – Institute for Advanced Study – xdu@ias.edu
Joint with Guth and Li, recently we showed that the solution to the free Schroedinger equation converges to its initial data almost everywhere, provided that the initial data is in the Sobolev space H^s(R^2) with s>1/3. This is sharp up to the endpoint, due to a counterexample by Bourgain. This pointwise convergence problem can be approached by estimates of Schroedinger maximal functions, which have some similar flavor as the Fourier restriction estimates. In this talk, I'll first show how to reduce the original problem in three dimensions to an essentially two dimensional one, via polynomial partitioning method. Then we'll see that the reduced problem asks how to control the size of the solution on a sparse and spread-out set, and it can be solved by refined Strichartz estimates derived from l^2 decoupling theorem and induction on scales.