Seminars and Colloquia by Series

A diagrammatic categorification of quantum groups

Series
Job Candidate Talk
Time
Wednesday, January 26, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Aaron LaudaColumbia University
The Jones polynomial is a link invariant that can be understood in terms of the representation theory of the quantum group associated to sl2. This description facilitated a vast generalization of the Jones polynomial to other quantum link and tangle invariants called Reshetikhin-Turaev invariants. These invariants, which arise from representations of quantum groups associated to simple Lie algebras, subsequently led to the definition of quantum 3-manifold invariants. In this talk we categorify quantum groups using a simple diagrammatic calculus that requires no previous knowledge of quantum groups. These diagrammatically categorified quantum groups not only lead to a representation theoretic explanation of Khovanov homology but also inspired Webster's recent work categorifying all Reshetikhin-Turaev invariants of tangles.

Nonnegative Polynomials and Sums of Squares

Series
Job Candidate Talk
Time
Monday, January 24, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greg BlekhermanUniversity of California, San Diego
A multivariate real polynomial $p$ is nonnegative if $p(x) \geq 0$ for all $x \in R^n$. I will review the history and motivation behind the problem of representing nonnegative polynomials as sums of squares. Such representations are of interest for both theoretical and practical computational reasons. I will present two approaches to studying the differences between nonnegative polynomials and sums of squares. Using techniques from convex geometry we can conclude that if the degree is fixed and the number of variables grows, then asymptotically there are significantly more nonnegative polynomials than sums of squares. For the smallest cases where there exist nonnegative polynomials that are not sums of squares, I will present a complete classification of the differences between these sets based on algebraic geometry techniques.

Regularization for Cox's Proportional Hazards Model With NP-Dimensionality

Series
Job Candidate Talk
Time
Thursday, January 20, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jelena BradicPrinceton University
High throughput genetic sequencing arrays with thousands of measurements per sample and a great amount of related censored clinical data have increased demanding need for better measurement specific model selection. In this paper we establish strong oracle properties of non-concave penalized methods for non-polynomial (NP) dimensional data with censoring in the framework of Cox's proportional hazards model. A class of folded-concave penalties are employed and both LASSO and SCAD are discussed specifically. We unveil the question under which dimensionality and correlation restrictions can an oracle estimator be constructed and grasped. It is demonstrated that non-concave penalties lead to significant reduction of the "irrepresentable condition" needed for LASSO model selection consistency. The large deviation result for martingales, bearing interests of its own, is developed for characterizing the strong oracle property. Moreover, the non-concave regularized estimator, is shown to achieve asymptotically the information bound of the oracle estimator. A coordinate-wise algorithm is developed for finding the grid of solution paths for penalized hazard regression problems, and its performance is evaluated on simulated and gene association study examples.

Cloaking via change of variables for the Helmholtz equation

Series
Job Candidate Talk
Time
Wednesday, January 12, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nguyen Hoai-MinhCourant Institute of Mathematical Sciences
A region of space is cloaked for a class of measurements if observers are not only unaware of its contents, but also unaware of the presence of the cloak using such measurements. One approach to cloaking is the change of variables scheme introduced by Greenleaf, Lassas, and Uhlmann for electrical impedance tomography and by Pendry, Schurig, and Smith for the Maxwell equations. They used a singular change of variables which blows up a point into the cloaked region. To avoid this singularity, various regularized schemes have been proposed. In this talk I present results related to cloaking via change of variables for the Helmholtz equation using the natural regularized scheme introduced by Kohn, Shen, Vogelius, and Weintein, where the authors used a transformation which blows up a small ball instead of a point into the cloaked region. I will discuss the degree of invisibility for a finite range or the full range of frequencies, and the possibility of achieving perfect cloaking. At the end of my talk, I will also discuss some results related to the wave equation in 3d.

How to get far with only a small effort

Series
Job Candidate Talk
Time
Tuesday, April 13, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Rafael de le LlaveDepartment of Mathematics, University of Texas, Austin
Many mechanical systems have the property that some small perturbations can accumulate over time to lead to large effects. Other perturbations just average out and cancel. It is interesting in applications to find out what systems have these properties and which perturbations average out and which ones grows. A complete answer is far from known but it is known that it is complicated and that, for example, number theory plays a role. In recent times, there has been some progress understanding some mechanisms that lead to instability. One can find landmarks that organize the long term behavior and provide an skeleton for the dynamics. Some of these landmarks provide highways along which the perturbations can accumulate.

Global Uniform Risk Bounds for Wavelet Deconvolution Estimators

Series
Job Candidate Talk
Time
Thursday, February 4, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Karim LouniciUniversity of Cambridge
We consider the statistical deconvolution problem where one observes $n$ replications from the model $Y=X+\epsilon$, where $X$ is the unobserved random signal of interest and where $\epsilon$ is an independent random error with distribution $\varphi$. Under weak assumptions on the decay of the Fourier transform of $\varphi$ we derive upper bounds for the finite-sample sup-norm risk of wavelet deconvolution density estimators $f_n$ for the density $f$ of $X$, where $f: \mathbb R \to \mathbb R$ is assumed to be bounded. We then derive lower bounds for the minimax sup-norm risk over Besov balls in this estimation problem and show that wavelet deconvolution density estimators attain these bounds. We further show that linear estimators adapt to the unknown smoothness of $f$ if the Fourier transform of $\varphi$ decays exponentially, and that a corresponding result holds true for the hard thresholding wavelet estimator if $\varphi$ decays polynomially. We also analyze the case where $f$ is a 'supersmooth'/analytic density. We finally show how our results and recent techniques from Rademacher processes can be applied to construct global nonasymptotic confidence bands for the density $f$.

Tropical geometry and applications

Series
Job Candidate Talk
Time
Thursday, January 28, 2010 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Josephine YuGeorgia Tech
Tropical geometry can be thought of as geometry over the tropical semiring, which is the set of real numbers together with the operations max and +. Just as ordinary linear and polynomial algebra give rise to convex geometry and algebraic geometry, tropical linear and polynomial algebra give rise to tropical convex geometry and tropical algebraic geometry. I will introduce the basic objects and problems in tropical geometry and discuss some relations with, and applications to, polyhedral geometry, computational algebra, and algebraic geometry.

Group Representation Patterns in Digital Signal Processing

Series
Job Candidate Talk
Time
Tuesday, January 26, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Shamgar GurevichInstitute for Advanced Study, Princeton
In the lecture I will explain how various fundamental structures from group representation theory appear naturally in the context of discrete harmonic analysis and can be applied to solve concrete problems from digital signal processing. I will begin the lecture by describing our solution to the problem of finding a canonical orthonormal basis of eigenfunctions of the discrete Fourier transform (DFT). Then I will explain how to generalize the construction to obtain a larger collection of functions that we call "The oscillator dictionary". Functions in the oscillator dictionary admit many interesting pseudo-random properties, in particular, I will explain several of these properties which arise in the context of problems of current interest in communication theory.

Chemotaxis and Numerical Methods for Chemotaxis Models

Series
Job Candidate Talk
Time
Thursday, January 21, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Yekaterina EpshteynCarnegie Mellon University
In this talk, I will first discuss several chemotaxis models includingthe classical Keller-Segel model.Chemotaxis is the phenomenon in which cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals (chemoattractants) in their environment. The mathematical models of chemotaxis are usually described by highly nonlinear time dependent systems of PDEs. Therefore, accurate and efficient numerical methods are very important for the validation and analysis of these systems. Furthermore, a common property of all existing chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in solutions rapidly growing in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. In either case, capturing such solutions numerically is a challenging problem. In our work we propose a family of stable (even at times near blow up) and highly accurate numerical methods, based on interior penalty discontinuous Galerkin schemes (IPDG) for the Keller-Segel chemotaxis model with parabolic-parabolic coupling. This model is the basic step in the modeling of many real biological processes and it is described by a system of a convection-diffusion equation for the cell density, coupled with a reaction-diffusion equation for the chemoattractant concentration.We prove theoretical hp error estimates for the proposed discontinuous Galerkin schemes. Our proof is valid for pre-blow-up times since we assume boundedness of the exact solution.Numerical experiments to demonstrate the stability and accuracy of the proposed methods for chemotaxis models and comparison with other methods will be presented. Ongoing research projects will be discussed as well.

Total positivity in loop groups

Series
Job Candidate Talk
Time
Tuesday, January 19, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Pavlo PylyavskyyUniversity of Michigan
The Edrei-Thoma theorem characterizes totally positive functions, and plays an important role in character theory of the infinite symmetric group. The Loewner-Whitney theorem characterizes totally positive elements of the general linear group, and is fundamental for Lusztig's theory of total positivity in reductive groups. In this work we derive a common generalization of the two theorems. The talk is based on joint work with Thomas Lam.

Pages