On the number of cliques in graphs with a forbidden clique minor
- Series
- Graph Theory Seminar
- Time
- Thursday, March 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Fan Wei – Stanford University
One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.
I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.
Please Note:
One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.
I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.
Many problems of spherical discrete and metric geometry may be reformulated as energy minimization problems and require techniques that stem from harmonic analysis, potential theory, optimization etc. We shall discuss several such problems as well of applications of these ideas to combinatorial geometry, discrepancy theory, signal processing etc.
If a finite group $G$ acts on a Cohen-Macaulay ring $A$, and the order of $G$ is a unit in $A$, then the invariant ring $A^G$ is Cohen-Macaulay as well, by the Hochster-Eagon theorem. On the other hand, if the order of $G$ is not a unit in $A$ then the Cohen-Macaulayness of $A^G$ is a delicate question that has attracted research attention over the last several decades, with answers in several special cases but little general theory. In this talk we show that the statement that $A^G$ is Cohen-Macaulay is equivalent to a statement quantified over the inertia groups for the action of G$ on $A$ acting on strict henselizations of appropriate localizations of $A$. In a case of long-standing interest—a permutation group acting on a polynomial ring—we show how this can be applied to find an obstruction to Cohen-Macaulayness that allows us to completely characterize the permutation groups whose invariant ring is Cohen-Macaulay regardless of the ground field. This is joint work with Sophie Marques.