Seminars and Colloquia by Series

Vanishing viscosity limit for the Navier-Stokes equations

Series
PDE Seminar
Time
Tuesday, November 30, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Mikhail PerepelitsaUniversity of Houston
In this talk we will discuss the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. We will follow the approach of R.DiPerna (1983) and reduce the problem to the study of a measure-valued solution of the Euler equations, obtained as a limit of a sequence of the vanishing viscosity solutions. For a fixed pair (x,t), the (Young) measure representing the solution encodes the oscillations of the vanishing viscosity solutions near (x,t). The Tartar-Murat commutator relation with respect to two pairs of weak entropy-entropy flux kernels is used to show that the solution takes only Dirac mass values and thus it is a weak solution of the Euler equations in the usual sense. In DiPerna's paper and the follow-up papers by other authors this approach was implemented for the system of the Euler equations with the artificial viscosity. The extension of this technique to the system of the Navier-Stokes equations is complicated because of the lack of uniform (with respect to the vanishing viscosity), pointwise estimates for the solutions. We will discuss how to obtain the Tartar-Murat commutator relation and to work out the reduction argument using only the standard energy estimates. This is a joint work with Gui-Qiang Chen (Oxford University and Northwestern University).

On evolution equations with fractional diffusion

Series
PDE Seminar
Time
Tuesday, November 9, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Luis SilvestreUniversity of Chicago
We prove a new Holder estimate for drift-(fractional)diffusion equations similar to the one recently obtained by Caffarelli and Vasseur, but for bounded drifts that are not necessarily divergence free. We use this estimate to study the regularity of solutions to either the Hamilton-Jacobi equation or conservation laws with critical fractional diffusion.

Persistence of a single phytoplankton species

Series
PDE Seminar
Time
Tuesday, November 2, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Yuan LouOhio State University
We investigate a nonlocal reaction-diffusion-advection equation which models the growth of a single phytoplankton species in a water column where the species depends solely on light for its metabolism. We study the combined effect of death rate, sinking or buoyant coe±cient, water column depth and vertical turbulent diffusion rate on the persistence of a single phytoplankton species. This is based upon a joint work with Sze-Bi Hsu, National Tsing-Hua University.

Well-posedness theory for compressible Euler equations in a physical vacuum

Series
PDE Seminar
Time
Tuesday, October 26, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Juhi JangDepartment of Mathematics, University of California, Riverside
An interesting problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of vacuum. A particular interest is so called physical vacuum which naturally arises in physical problems. The main difficulty lies in the fact that the physical systems become degenerate along the boundary. I'll present the well- posedness result of 3D compressible Euler equations for polytropic gases. This is a joint work with Nader Masmoudi.

Mixed Models for Traffic Flow and Crowd Dynamics

Series
PDE Seminar
Time
Tuesday, October 12, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Benedetto PiccoliRutergs University
Motivated by applications to vehicular traffic, supply chains and others, various continuous models for traffic flow on networks were recently proposed. We first present some results for theory of conservation laws on graphs. Then we focus on recent mixed models, involving continuous-discrete spaces and ode-pde systems. Then a time evolving measures approach is showed, with applications to crowd dynamics.

Nonlinear Schroedinger equation with a Magnetic Potential

Series
PDE Seminar
Time
Tuesday, October 5, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Shijun ZhengGeorgia Southern University
The dissipative mechanism of Schroedinger equation is mathematically described by the decay estimate of solutions. In this talk I mainly focused on the use of harmonic analysis techniques to obtain suitable time decay estimates and then prove the local wellposedness for semilinear Schroedinger equation in certain external magnetic field. It turns out that the scattering with a potential may lead to understanding of the wellposedness of NLS in the presence of nonsmooth or large initial data. Part of this talk is a joint work with Zhenqiu Zhang.

Turbulence: a walk on the wild side

Series
PDE Seminar
Time
Tuesday, September 28, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Predrag CvitanovićPhysics, Georgia Institute of Technology
In the world of moderate Reynolds number, everyday turbulence of fluids flowing across planes and down pipes a velvet revolution is taking place. Experiments are almost as detailed as the numerical simulations, DNS is yielding exact numerical solutions that one dared not dream about a decade ago, and dynamical systems visualization of turbulent fluid's state space geometry is unexpectedly elegant. We shall take you on a tour of this newly breached, hitherto inaccessible territory. Mastery of fluid mechanics is no prerequisite, and perhaps a hindrance: the talk is aimed at anyone who had ever wondered why - if no cloud is ever seen twice - we know a cloud when we see one? And how do we turn that into mathematics? (Joint work with J. F. Gibson)

An unusual duality principle for fully nonlinear equations

Series
PDE Seminar
Time
Tuesday, September 21, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Professor Scott ArmstrongUniversity of Chicago
We discuss how to solve a Hamilton-Jacobi-Bellman equation ``at resonance." Our characterization is in terms of invariant measures and is analogous to the Fredholm alternative in the linear case.   

Small solutions of nonlinear Schrodinger equations near first excited states

Series
PDE Seminar
Time
Tuesday, August 31, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Professor Tai-Peng TsaiDepartment of Mathematics, University of British Columbia
Consider a nonlinear Schrodinger equation in $R^3$ whose linear part has three or more eigenvalues satisfying some resonance conditions. Solutions which are initially small in $H^1 \cap L^1(R^3)$ and inside a neighborhood of the first excited state family are shown to converge to either a first excited state or a ground state at time infinity. An essential part of our analysis is on the linear and nonlinear estimates near nonlinear excited states, around which the linearized operators have eigenvalues with nonzero real parts and their corresponding eigenfunctions are not uniformly localized in space. This is a joint work with Kenji Nakanishi and Tuoc Van Phan.The preprint of the talk is available at http://arxiv.org/abs/1008.3581

Pages