Seminars and Colloquia by Series

A uniqueness result for the continuity equation in dimension two

Series
PDE Seminar
Time
Tuesday, April 20, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Gianluca CrippaUniversity of Parma (Italy)
In the simplest form, our result gives a characterization of bounded,divergence-free vector fields on the plane such that the Cauchyproblem for the associated continuity equation has a unique boundedsolution (in the sense of distribution).Unlike previous results in this directions (Di Perna-Lions, Ambrosio,etc.), the proof does not rely on regularization, but rather on adimension-reduction argument which allows us to prove uniqueness usingwell-known one-dimensional results (it is indeed a variant of theclassical method of characteristics).Note that our characterization is not given in terms of functionspaces, but using a qualitative property which is completelynon-linear in character, namely a suitable weak formulation of theSard property.This is a joint work with Giovanni Alberti (University of Pisa) andStefano Bianchini (SISSA, Trieste).

Fokker-Planck equation on graphs with finite number of vertices

Series
PDE Seminar
Time
Tuesday, April 13, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Yao LiGeorgia Tech
Fokker-Planck equation is a linear parabolic equation which describes the time evolution of of probability distribution of a stochastic process defined on a Euclidean space. Moreover, it is the gradient flow of free energy functional. We will present a Fokker-Planck equation which is a system of ordinary differential equations and describes the time evolution of probability distribution of a stochastic process on a graph with a finite number of vertices. It is shown that there is a strong connection but also substantial differences between the ordinary differential equations and the usual Fokker-Planck equation on Euclidean spaces. Furthermore, the ordinary differential equation is in fact a gradient flow of free energy on a Riemannian manifold whose metric is closely related to certain Wasserstein metrics. Some examples will also be discussed.

On Landau Damping

Series
PDE Seminar
Time
Tuesday, April 6, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Clement MouhotEcole Normale Superieure
Landau damping is a collisionless stability result of considerable importance in plasma physics, as well as in galactic dynamics. Roughly speaking, it says that spatial waves are damped in time (very rapidly) by purely conservative mechanisms, on a time scale much lower than the effect of collisions. We shall present in this talk a recent work (joint with C. Villani) which provides the first positive mathematical result for this effect in the nonlinear regime, and qualitatively explains its robustness over extremely long time scales. Physical introduction and implications will also be discussed.

The eigenvalue problem of singular ergodic control

Series
PDE Seminar
Time
Tuesday, March 30, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Ryan HyndUniversity of California
We discuss a non-linear eigenvalue problem where the eigenvalue has a natural control-theoretic interpretation as an optimal "long-time averaged cost." We also show how such problems arise in financial market models with small transaction costs.

On spectral stability for solitary water waves

Series
PDE Seminar
Time
Tuesday, March 9, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Bob PegoCarnegie Mellon University
A classic story of nonlinear science started with the particle-like water wave that Russell famously chased on horseback in 1834. I will recount progress regarding the robustness of solitary waves in nonintegrable model systems such as FPU lattices, and discuss progress toward a proof (with Shu-Ming Sun) of spectral stability of small solitary waves for the 2D Euler equations for water of finite depth without surface tension.

Global solutions for the Navier-Stokes equations with some large initial data

Series
PDE Seminar
Time
Tuesday, March 2, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Marius PaicuUniversité Paris-Sud
We consider the three dimensional Navier-Stokes equations with a large initial data and we prove the existence of a global smooth solution. The main feature of the initial data is that it varies slowly in the vertical direction and has a norm which blows up as the small parameter goes to zero. Using the language of geometrical optics, this type of initial data can be seen as the ``ill prepared" case. Using analytical-type estimates and the special structure of the nonlinear term of the equation we obtain the existence of a global smooth solution generated by this large initial data. This talk is based on a work in collaboration with J.-Y. Chemin and I. Gallagher and on a joint work with Z. Zhang.

A variational method for a class of parabolic PDEs

Series
PDE Seminar
Time
Tuesday, February 16, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Wilfrid GangboGeorgia Tech
Let $\mathbb{H}$ be a Hilbert space and $h: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ be such that $h(x, \cdot)$ is uniformly convex and grows superlinearly at infinity, uniformy in $x$. Suppose $U: \mathbb{H} \rightarrow \mathbb{R}$ is strictly convex and grows superlinearly at infinity. We assume that both $H$ and $U$ are smooth. If $\mathbb{H}$ is of infinite dimension, the initial value problem $\dot x= -\nabla_p h(x, -\nabla U(x)), \; x(0)=\bar x$ is not known to admit a solution. We study a class of parabolic equations on $\mathbb{R}^d$ (and so of infinite dimensional nature), analogous to the previous initial value problem and establish existence of solutions. First, we extend De Giorgi's interpolation method to parabolic equations which are not gradient flows but possess an entropy functional and an underlying Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial variables, but it does not induce a metric. These interpolation reveal to be powerful tool for proving convergence of a time discrete algorithm. (This talk is based on a joint work with A. Figalli and T. Yolcu).

L^1 convergence toward Barenblatt solution of isentropic porous medium flows

Series
PDE Seminar
Time
Tuesday, February 9, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Ronghua PanGeorgia Tech
Darcy's law was observed in the motion of porous medium flows. This talk aims at the mathematical justification on Darcy's law as long time limit from compressible Euler equations with damping. In particularly, we shall showthat any physical solution with finite total mass shall converges in L^1 distance toward the Barenblatt's solution of the same mass for the Porous Medium Equation. The approach will explore the dissipation of the entropy inequality motivated by the second law of thermodynamics. This is a joint work with Feimin Huang and Zhen Wang.

Inviscid damping of Couette flows and nonlinear Landau damping

Series
PDE Seminar
Time
Tuesday, February 2, 2010 - 15:10 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Zhiwu LinGeorgia Tech
Couette flows are shear flows with a linear velocity profile. Known by Orr in 1907, the vertical velocity of the linearized Euler equations at Couette flows is known to decay in time, for L^2 vorticity. It is interesting to know if the perturbed Euler flow near Couette tends to a nearby shear flow. Such problems of nonlinear inviscid damping also appear for other stable flows and are important to understand the appearance of coherent structures in 2D turbulence. With Chongchun Zeng, we constructed non-parallel steady flows arbitrarily near Couette flows in H^s (s<3/2) norm of vorticity. Therefore, the nonlinear inviscid damping is not true in (vorticity) H^s (s<3/2) norm. We also showed that in (vorticity) H^s (s>3/2) neighborhood of Couette flows, the only steady structures (including travelling waves) are stable shear flows. This suggests that the long time dynamics near Couette flows in (vorticity) H^s (s>3/2) space might be simpler. Similar results will also be discussed for the problem of nonlinear Landau damping in 1D electrostatic plasmas.

Using global invariant manifolds to understand metastability in Burgers equation with small viscosity

Series
PDE Seminar
Time
Tuesday, January 26, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Margaret BeckBoston University
The large-time behavior of solutions to Burgers equation with small viscosity isdescribed using invariant manifolds. In particular, a geometric explanation is provided for aphenomenon known as metastability, which in the present context means that solutions spend avery long time near the family of solutions known as diffusive N-waves before finallyconverging to a stable self-similar diffusion wave. More precisely, it is shown that in termsof similarity, or scaling, variables in an algebraically weighted L^2 space, theself-similar diffusion waves correspond to a one-dimensional global center manifold ofstationary solutions. Through each of these fixed points there exists a one-dimensional,global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus,metastability corresponds to a fast transient in which solutions approach this ``metastable"manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally,convergence to the self-similar diffusion wave. This is joint work with C. Eugene Wayne.

Pages