Seminars and Colloquia by Series

Random matrices with independent log-concave columns

Series
Stochastics Seminar
Time
Thursday, November 11, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Radoslaw AdamczakUniversity of Warsaw and Fields Institute
I will discuss certain geometric properties of random matrices with independent logarithmically concave columns, obtained in the last several years jointly with O. Guedon, A. Litvak, A. Pajor and N. Tomczak-Jaegermann. In particular I will discuss estimates on the largest and smallest singular values of such matrices and rates on convergence of empirical approximations to covariance matrices of log-concave measures (the Kannan-Lovasz-Simonovits problem).

Asymptotic properties of random matrices of long-range percolation model

Series
Stochastics Seminar
Time
Thursday, October 21, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Slim AyadiSchool of Math, Georgia Tech
We study the spectral properties of matrices of long-range percolation model. These are N*N random real symmetric matrices H whose elements are independent random variables taking zero value with probability 1-\psi((i-j)/b), b\in \R^{+}, where \psi is an even positive function with \psi(t)<1 and vanishing at infinity. We show that under rather general conditions on the probability distribution of H(i,j) the semicircle law is valid for the ensemble we study in the limit N,b\to\infty. In the second part, we study the leading term of the correlation function of the resolvent G(z)=(H-z)^{-1} with large enough |Imz| in the limit N,b\to\infty, b=O(N^{\alpha}), 1/3<\alpha<1. We show that this leading term, when considered in the local spectral scale leads to an expression found earlier by other authors for band random matrix ensembles. This shows that the ensemble we study and that of band random matrices belong to the same class of spectral universality.

Homogenization of the G-equation in random media

Series
Stochastics Seminar
Time
Thursday, October 7, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Alexei NovikovPenn State
The G-equation is a Hamilton-Jacobi level-set equation, that is used in turbulent combustion theory. Level sets of the solution represent a flame surface which moves with normal velocity that is the sum of the laminar flame velocity and the fluid velocity. In this work I will discuss the large-scale long-time asymptotics of these solutions when the fluid velocity is modeled as a stationary incompressible random field. The main challenge of this work comes from the fact that our Hamiltonian is noncoercive. This is a joint work with J.Nolen.

A Stochastic Differential game for the inhomogeneous infinity-Laplace equation

Series
Stochastics Seminar
Time
Thursday, September 30, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Amarjit BudhirajaUniversity of North Carolina at Chapel Hill
A two-player zero-sum stochastic differential game, defined in terms of an m-dimensional state process that is driven by a one-dimensional Brownian motion, played until the state exits the domain, is studied.The players controls enter in a diffusion coefficient and in an unbounded drift coefficient of the state process. We show that the game has value, and characterize the value function as the unique viscosity solution of an inhomogeneous infinity Laplace equation.Joint work with R. Atar.

Von Neumann Entropy Penalization and Estimation of Low Rank Matrices

Series
Stochastics Seminar
Time
Thursday, September 16, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Vladimir KoltchinskiiSchool of Mathematics, Georgia Tech
We study a problem of estimation of a large Hermitian nonnegatively definite matrix S of unit trace based on n independent measurements Y_j = tr(SX_j ) + Z_j , j = 1, . . . , n, where {X_j} are i.i.d. Hermitian matrices and {Z_j } are i.i.d. mean zero random variables independent of {X_j}. Problems of this nature are of interest in quantum state tomography, where S is an unknown density matrix of a quantum system. The estimator is based on penalized least squares method with complexity penalty defined in terms of von Neumann entropy. We derive oracle inequalities showing how the estimation error depends on the accuracy of approximation of the unknown state S by low-rank matrices. We will discuss these results as well as some of the tools used in their proofs (such as generic chaining bounds for empirical processes and noncommutative Bernstein type inequalities).

The set-indexed Lévy processes

Series
Stochastics Seminar
Time
Thursday, May 6, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Erick HerbinEcole Centrale Paris
The aim of this joint work with Ely Merzbach is to present a satisfactory definition of the class of set-indexedL\'evy processes including the set-indexed Brownian motion, the spatial Poisson process, spatial compound Poisson processesand some other stable processes and to study their properties. More precisely, the L\'evy processes are indexed by a quite general class $\mathcal{A}$ of closed subsets in a measure space $(\mathcal{T} ,m)$. In the specific case where $\mathcal{T}$ is the $d$-dimensional rectangle$[0 ,1]^d$ and $m$ is the Lebesgue measure, a special kind of this definition was given and studied by Bass and Pyke and by Adler and Feigin. However, in our framework the parameter set is more general and, it will be shown that no group structure is needed in order to define the increment stationarity property for L\'evy processes.

A sufficient condition for the continuity of permanental processes with applications to local times of Markov processes

Series
Stochastics Seminar
Time
Thursday, April 22, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Jay RosenCollege of Staten Island, CUNY
We provide a sufficient condition for the continuity of real valued permanental processes. When applied to the subclass of permanental processes which consists of squares of Gaussian processes, we obtain the sufficient condition for continuity which is also known to be necessary. Using an isomorphism theorem of Eisenbaum and Kaspi which relates Markov local times and permanental processes we obtain a general sufficient condition for the joint continuity of the local times.

CLT for Excursion Sets Volumes of Random Fields

Series
Stochastics Seminar
Time
Thursday, April 8, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Alexander BulinskiLomonosov Moscow State University
We consider various dependence concepts for random fields. Special attention is paid to Gaussian and shot-noise fields. The multivariate central limit theorems (CLT) are proved for the volumes of excursion sets of stationary quasi-associated random fields on $\mathbb{R}^d$. Formulae for the covariance matrix of the limiting distribution are provided. Statistical versions of the CLT are established as well. They employ three different estimators of the asymptotic covariance matrix. Some numerical results are also discussed.

Goodness-of-fit testing under long memory

Series
Stochastics Seminar
Time
Thursday, April 1, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Hira KoulMichigan State University
In this talk we shall discuss the problem of fitting a distribution function to the marginal distribution of a long memory process. It is observed that unlike in the i.i.d. set up, classical tests based on empirical process are relatively easy to implement. More importantly, we discuss fitting the marginal distribution of the error process in location, scale and linear regression models. An interesting observation is that the first order difference between the residual empirical process and the null model can not be used to asymptotically to distinguish between the two marginal distributions that differ only in their means. This finding is in sharp contrast to a recent claim of Chan and Ling to appear in the Ann. Statist. that such a process has a Gaussian weak limit. We shall also proposes some tests based on the second order difference in this case and analyze some of their properties. Another interesting finding is that residual empirical process tests in the scale problem are robust against not knowing the scale parameter. The third finding is that in linear regression models with a non-zero intercept parameter the first order difference between the empirical d.f. of residuals and the null d.f. can not be used to fit an error d.f. This talk is based on ongoing joint work with Donatas Surgailis.

Quantization of Stochastic Navier-Stokes Equation

Series
Stochastics Seminar
Time
Tuesday, March 30, 2010 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Boris RozovskyDivision of Applied Mathematics, Brown University
We consider a stochastic Navier-Stokes equation driven by a space-time Wiener process. This equation is quantized by transformation of the nonlinear term to the Wick product form. An interesting feature of this type of perturbation is that it preserves the mean dynamics: the expectation of the solution of the quantized Navier-Stokes equation solves the underlying deterministic Navier-Stokes equation. From the stand point of a statistician it means that the perturbed model is an unbiased random perturbation of the deterministic Navier-Stokes equation.The quantized equation is solved in the space of generalized stochastic processes using the Cameron-Martin version of the Wiener chaos expansion. A solution of the quantized version is unique if and only if the uniqueness property holds for the underlying deterministic Navier-Stokes equation. The generalized solution is obtained as an inverse of solutions to corresponding quantized equations. We will also demonstrate that it could be approximated by real (non-generalized processes). A solution of the quantized Navier-Stokes equation turns out to be nonanticipating and Markov. The talk is based on a joint work with R. Mikulevicius.

Pages