Seminars and Colloquia by Series

On the emergence of a quantum Boltzmann equation near a Bose-Einstein condensate

Series
Math Physics Seminar
Time
Thursday, November 3, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Thomas ChenUniversity of Texas, Austin

The mathematically rigorous derivation of nonlinear Boltzmann equations from first principles in interacting physical systems is an extremely active research area in Analysis, Mathematical Physics, and Applied Mathematics. In classical physical systems, rigorous results of this type have been obtained for some models. In the quantum case on the other hand, the problem has essentially remained open. In this talk, I will explain how a cubic quantum Boltzmann equation arises within the fluctuation dynamics around a Bose-Einstein condensate, within the quantum field theoretic description of an interacting Boson gas. This is based on joint work with Michael Hott.

Join Zoom Meeting at https://gatech.zoom.us/j/92873362365

Persistence of periodic orbits in functional perturbations of an ODE

Series
Math Physics Seminar
Time
Thursday, October 27, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Joan GimenoUniversitat de Barcelona & Georgia Institute of Technology

With very minor assumptions, I show that periodic orbits in
an ODE can persist under (singular) perturbations of including a delay
term.  These perturbations change the phase space from finite to
infinite dimensions. The results apply to electrodynamics and give new
approaches to handle state-dependent, small, nested, and distributed
delays.

I will discuss and explain some motivations, the new methods, sketches
of the proofs, and possible applications. I will end the talk giving
some ideas of work in progress and possible future works.

Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds

Series
Math Physics Seminar
Time
Thursday, October 20, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Ruoci SunSchool of Mathematics, Georgia Tech

This presentation, which is based on the work Sun [2], is dedicated to describing the complete integrability of the Benjamin–Ono (BO) equation on the line when restricted to every N-soliton mani- fold, denoted by UN . We construct (generalized) action–angle coordinates which establish a real analytic symplectomorphism from UN onto some open convex subset of R2N and allow to solve the equation by quadrature for any such initial datum. As a consequence, UN is the universal covering of the manifold of N-gap potentials for the BO equation on the torus as described by G ́erard–Kappeler [1]. The global well-posedness of the BO equation on UN is given by a polynomial characterization and a spectral char- acterization of the manifold UN . Besides the spectral analysis of the Lax operator of the BO equation and the shift semigroup acting on some Hardy spaces, the construction of such coordinates also relies on the use of a generating functional, which encodes the entire BO hierarchy. The inverse spectral formula of an N-soliton provides a spectral connection between the Lax operator and the infinitesimal generator of the very shift semigroup. The construction of action–angle coordinates for each UN constitutes a first step towards the soliton resolution conjecture of the BO equation on the line.

Spectral Properties of Periodic Elastic Beam Hamiltonians on Hexagonal Lattices

Series
Math Physics Seminar
Time
Thursday, October 13, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Burak HatinogluSchool of Mathematics, Georgia Tech

Elastic beam Hamiltonians on single-layer graphs are constructed out of Euler-Bernoulli beams, each governed by a scalar valued fourth-order Schrödinger operator equipped with a real symmetric potential. Unlike the second-order Schrödinger operator commonly applied in quantum graph literature, here the self-adjoint vertex conditions encode geometry of the graph by their dependence on angles at which edges are met. In this talk, I will first consider spectral properties of this Hamiltonian with periodic potentials on a special equal-angle lattice, known as graphene or honeycomb lattice. I will also discuss spectral properties for the same operator on lattices in the geometric neighborhood of graphene. This talk is based on a joint work with Mahmood Ettehad (University of Minnesota),https://arxiv.org/pdf/2110.05466.pdf.

Recovery of quantum information: quantum Markov chains and matrix product states

Series
Math Physics Seminar
Time
Thursday, October 6, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Brian KennedySchool of Physics, Georgia Tech

The mathematical theory of the recovery of quantum states stored in a quantum memory, is intimately related to the subadditivity property of the entropy function, and the class of states known as quantum Markov chains. In this talk we will introduce some of the basic ideas of this area of quantum information theory. We discuss a theorem regarding recovery of a widely studied class of quantum states, the matrix product states, and its implication for the mutual information stored over separated regions of a one dimensional quantum memory. This is joint work with Pavel Svetlichnyy and Shivan Mittal.

Which magnetic fields support a zero mode?

Series
Math Physics Seminar
Time
Thursday, September 29, 2022 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Michael LossSchool of Mathematics, Georgia Tech

Please Note: Note the different time!

I present some results concerning the size of magnetic fields that support zero modes for the three dimensional Dirac equation and related problems for spinor equations. Critical quantities measuring this size are the 3/2 norm of the magnetic field B and the 3 norm of the vector potential A.  The point is that the spinor structure enters the analysis in a crucial way. This is joint work with Rupert Frank at LMU Munich.

Formation of small scales in passive scalar advection

Series
Math Physics Seminar
Time
Thursday, September 22, 2022 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex BlumenthalSchool of Mathematics

I will describe my recent joint work with Jacob Bedrossian and Sam Punshon-Smith on the formation of small scales in passively-advected scalars being mixed by a fluid evolving by the Navier-Stokes equation. Our main result is a confirmation of Batchelor's law, a power-law for the spectral density of a passively advected scalar in the so-called Batchelor regime of infinite Schmidt number. Along the way I will describe how this small-scale formation is intimately connected with dynamical questions, such as the connection between shear-straining in the fluid and sensitive dependence on initial conditions (Lyapunov exponents). Time-permitting I will describe some work-in-progress as well as interesting open problems in the area.

Embedded eigenvalues of the Neumann Poincaré operator

Series
Math Physics Seminar
Time
Thursday, April 23, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/730205379
Speaker
Wei LiLouisiana State University

The Neumann-Poincaré (NP) operator arises in boundary value problems, and plays an important role in material design, signal amplification, particle detection, etc. The spectrum of the NP operator on domains with corners was studied by Carleman before tools for rigorous discussion were created, and received a lot of attention in the past ten years. In this talk, I will present our discovery and verification of eigenvalues embedded in the continuous spectrum of this operator. The main ideas are decoupling of spaces by symmetry and construction of approximate eigenvalues. This is based on two works with Stephen Shipman and Karl-Mikael Perfekt.

Global eigenvalue distribution of matrices defined by the skew-shift

Series
Math Physics Seminar
Time
Thursday, April 9, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
BlueJeans: https://bluejeans.com/900271747
Speaker
Marius LemmHarvard University

Please Note: The seminar is held in BlueJeans: https://bluejeans.com/900271747

A central question in ergodic theory is whether sequences obtained by sampling along the orbits of a given dynamical system behave similarly to sequences of i.i.d. random variables. Here we consider this question from a spectral-theoretic perspective. Specifically, we study large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of the skew-shift on the 2-torus with irrational frequency. We prove that their global eigenvalue distribution converges to the Wigner semicircle law, a hallmark of random matrix statistics, which evidences the quasi-random nature of the skew-shift dynamics. This is joint work with Arka Adhikari and Horng-Tzer Yau.

Cancelled

Series
Math Physics Seminar
Time
Thursday, March 12, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wei LiLouisiana State University

The Neumann-Poincaré (NP) operator arises in boundary value problems, and plays an important role in material design, signal amplification, particle detection, etc. The spectrum of the NP operator on domains with corners was studied by Carleman before tools for rigorous discussion were created, and received a lot of attention in the past ten years. In this talk, I will present our discovery and verification of eigenvalues embedded in the continuous spectrum of this operator. The main ideas are decoupling of spaces by symmetry and construction of approximate eigenvalues. This is based on two works with Stephen Shipman and Karl-Mikael Perfekt.

Pages