Seminars and Colloquia by Series

On symplectic mean curvature flows

Series
PDE Seminar
Time
Tuesday, February 20, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jiayu LiUniversity of Science and Technology of China

  It is known that the symplectic property is preserved by the mean curvature flow in a K\"ahler-Einstein surface which is called "symplectic mean curvature flow". It was proved that there is no finite time Type I singularities for the symplectic mean curvature flow. We will talk about recent progress on an important Type II singularity of symplectic mean curvature flow-symplectic translating soliton. We will show that a symplectic translating soliton must be a plane under some natural assumptions which are necessary by investigating some examples.

Optimal localization for the Einstein constraints

Series
PDE Seminar
Time
Tuesday, February 13, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Philippe G. LeFlochSorbonne University and CNRS

I will discuss a nonlinear elliptic system of partial differential equations arising in Riemannian geometry and General Relativity. Specifically, I will present recent advances on the analysis of asymptotically Euclidean, initial data sets for Einstein’s field equations. In collaboration with Bruno Le Floch (Sorbonne University) I proved that solutions to the Einstein constraints can be glued together along possibly nested conical domains. The constructed solutions may have arbitrarily low decay at infinity, while enjoying (super-)harmonic estimates within possibly narrow cones at infinity. Importantly, our localized seed-to-solution method, as we call it, leads to a proof of a conjecture by Alessandro Carlotto and Richard Schoen on the localization problem at infinity, and generalize P. LeFloch and Nguyen’s theorem on the asymptotic localization problem. This lecture will be based on https://arxiv.org/abs/2312.17706

Inviscid limit from Navier-Stokes to BV solutions of compressible Euler equations

Series
PDE Seminar
Time
Tuesday, February 6, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Geng ChenUniversity of Kansas

 In the realm of mathematical fluid dynamics, a formidable challenge lies in establishing inviscid limits from the Navier-Stokes equations to the Euler equations. The pursuit of solving this intricate problem, particularly concerning singular solutions, persists in both compressible and incompressible scenarios. In particular, compressible Euler equations are a typical system of hyperbolic conservation laws, whose solution forms shock waves in general.

 

In this talk, we will discuss the recent proof on the unique vanishing viscosity limit from Navier-Stokes equations to the BV solution of compressible Euler equations, for the general Cauchy Problem. Moreover, we extend our findings by establishing the well-posedness of such solutions within the broader class of inviscid limits of Navier-Stokes equations with locally bounded energy initial values.  This is a joint work with Kang and Vasseur, which can be found on arXiv:2401.09305.

 

The uniqueness and L2 stability of Euler equations, done by Chen-Krupa-Vasseur, will also be discussed in this talk.

Persistence of spatial analyticity in 3D hyper-dissipative Navier-Stokes models

Series
PDE Seminar
Time
Tuesday, January 23, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zoran Grujic University of Alabama Birmingham

It has been known since the pioneering work of J.L. Lions in 1960s that 3D hyper-dissipative (HD) Navier-Stokes (NS) system exhibits global-in-time regularity as long as the hyper-diffusion exponent is greater or equal to 5/4.  One should note that at 5/4, the system is critical, i.e., the energy level and the scaling -invariant level coincide. What happens in the super-critical regime, the hyper-diffusion exponent being strictly between 1 and 5/4 remained a mystery. 

 

The goal of this talk is to demonstrate that as soon as the hyper-diffusion exponent is greater than 1, a class of monotone blow-up scenarios consistent with the analytic structure of the flow (prior to the possible singular time) can be ruled out (a sort of 'runaway train' scenario). The argument is in the spirit of the regularity theory of the 3D HD NS system in 'turbulent scenario' (in the super-critical regime) developed by Grujic and Xu, relying on 'dynamic interpolation' – however, it is much shorter, tailored to the class of blow-up profiles in view. This is a joint work with Aseel Farhat.

Global Solutions For Systems of Quadratic Nonlinear Schrödinger Equations in 3D

Series
PDE Seminar
Time
Tuesday, January 16, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Boyang SuUniversity of Chicago


The existence of global solutions for the Schrödinger equation
 i\partial_t u + \Delta u = P_d(u),
with nonlinearity $P_d$ homogeneous of degree $d$, has been extensively studied. Most results focus on the case with gauge invariant nonlinearity, where the solution satisfies several conservation laws. However, the problem becomes more complicated as we consider a general nonlinearity $P_d$. So far, global well-posedness for small data is known for $d$ strictly greater than the Strauss exponent. In dimension $3$, this Strauss exponent is $2$, making NLS with quadratic nonlinearity an interesting topic.

In this talk, I will present a result that shows the global existence and scattering for systems of quadratic NLS for small, localized data. To tackle the challenge presented by the $u\Bar{u}$-type nonlinearity, we require an $\epsilon$ regularization for the terms of this type in the system.
 

Quantitative acceleration of convergence to invariant distribution by irreversibility in diffusion processes

Series
PDE Seminar
Time
Tuesday, December 5, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yuqing WangGeorgia Tech

Sampling from the Gibbs distribution is a long-standing problem studied across various fields. Among many sampling algorithms, Langevin dynamics plays a crucial role, particularly for high-dimensional target distributions. In practical applications, accelerating sampling dynamics is always desirable. It has long been studied that adding an irreversible component to reversible dynamics, such as Langevin, can accelerate convergence. Concrete constructions of irreversible components have also been explored in specific scenarios. However, a general strategy for such construction is still elusive. In this talk, I will introduce the concept of leveraging irreversibility to accelerate general dynamics, along with the quantification of irreversible dynamics. Our theory is mainly based on designing a modified entropy functional originally developed for linear kinetic equations (Dolbeault et al., 2015).

The most likely evolution of diffusing and vanishing particles: Schrodinger Bridges with unbalanced marginals

Series
PDE Seminar
Time
Tuesday, November 21, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yongxin ChenGeorgia Tech

Stochastic flows of an advective-diffusive nature are ubiquitous in biology and the physical sciences. Of particular interest is the problem to reconcile observed marginal distributions with a given prior posed by E. Schroedinger in 1932/32 and known as the Schroedinger Bridge Problem (SBP). It turns out that Schroedinger’s problem can be viewed as a problem in large deviations, a modeling problem, as well as a control problem. Due to the fundamental significance of this problem, interest in SBP and in its deterministic (zero-noise limit) counterpart of Optimal Transport (OT) has in recent years enticed a broad spectrum of disciplines, including physics, stochastic control, computer science, and geometry. Yet, while the mathematics and applications of SBP/OT have been developing at a considerable pace, accounting for marginals of unequal mass has received scant attention; the problem to interpolate between “unbalanced” marginals has been approached by introducing source/sink terms into the transport equations, in an adhoc manner, chiefly driven by applications in image registration. Nevertheless, losses are inherent in many physical processes and, thereby, models that account for lossy transport may also need to be reconciled with observed marginals following Schroedinger’s dictum; that is, to adjust the probability of trajectories of particles, including those that do not make it to the terminal observation point, so that the updated law represents the most likely way that particles may have been transported, or vanished, at some intermediate point. Thus, the purpose of this talk is to present recent results on stochastic evolutions with losses, whereupon particles are “killed” (jump into a coffin/extinction state) according to a probabilistic law, and thereby mass is gradually lost along their stochastically driven flow. Through a suitable embedding we turn the problem into an SBP for stochastic processes that combine diffusive and jump characteristics. Then, following a large-deviations formalism in the style of Schroedinger, given a prior law that allows for losses, we explore the most probable evolution of particles along with the most likely killing rate as the particles transition between the specified marginals. Our approach differs sharply from previous work involving a Feynman-Kac multiplicative reweighing of the reference measure which, as we argue, is far from Schroedinger’s quest. We develop a suitable Schroedinger system of coupled PDEs' for this problem, an iterative Fortet-IPF-Sinkhorn algorithm for computations, and finally formulate and solve a related fluid-dynamic control problem for the flow of one-time marginals where both the drift and the new killing rate play the role of control variables. Joint work with Tryphon Georgiou and Michele Pavon.

Onsager's conjecture in 2D

Series
PDE Seminar
Time
Tuesday, November 14, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Razvan-Octavian RaduPrinceton University

I will begin by describing the ideas involved in the Nash iterative constructions of solutions to the Euler equations. These were introduced by De Lellis and Szekelyhidi (and developed by many authors) in order to tackle the flexible side of the Onsager conjecture. Then, I will describe Isett’s proof of the conjecture in the 3D case, and highlight the simple reason for which the strategy will not work in 2D. Finally, I will describe a construction of non-conservative solutions that works also in 2D (this is joint work with Vikram Giri).

Dynamics of kink clusters for scalar fields in dimension 1+1

Series
PDE Seminar
Time
Tuesday, November 7, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jacek JendrejCNRS and LAGA, Universite Sorbonne Paris Nord

We consider classical scalar fields in dimension 1+1 with a
self-interaction potential being a symmetric double-well. Such a model
admits non-trivial static solutions called kinks and antikinks. A kink
cluster is a solution approaching, for large positive times, a
superposition of alternating kinks and antikinks whose velocities
converge to 0 and mutual distances grow to infinity. Our main result is
a determination of the asymptotic behaviour of any kink cluster at the
leading order.
Our results are partially inspired by the notion of "parabolic motions"
in the Newtonian n-body problem. I will present this analogy and mention
its limitations. I will also explain the role of kink clusters as
universal profiles for formation of multi-kink configurations.
This is a joint work with Andrew Lawrie.

Long time behavior in cosmological Einstein-Belinski-Zakharov spacetimes

Series
PDE Seminar
Time
Tuesday, October 31, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Claudio MuñozUniversidad de Chile

In this talk I will present some recent results in collaboration with Jessica Trespalacios where we consider Einstein-Belinski-Zakharov spacetimes and prove local and global existence, long time behavior of possibly large solutions and some applications to gravisolitons of Kasner type.

Pages