Seminars and Colloquia by Series

Global-in-space stability of self-similar blowup for supercritical wave maps

Series
PDE Seminar
Time
Tuesday, November 15, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Irfan GlogićUniversity of Vienna

A distinctive feature of nonlinear evolution equations is the possibility of breakdown of solutions in finite time. This phenomenon, which is also called singularity formation or blowup, has both physical and mathematical significance, and, as a consequence, predicting blowup and understanding its nature is a central problem of the modern analysis of nonlinear PDEs.

In this talk we concentrate on wave maps – a geometric nonlinear wave equation – and we discuss the existence and stability of self-similar solutions, as in all higher dimensions they appear to drive the generic blowup behavior. We outline a novel framework for studying global-in-space stability of such solutions; we then men-tion some long-awaited results that we thereby obtained, and, finally, we discuss the new mathematical challenges that our approach generates.

Uniform linear inviscid damping near monotonic shear flows in the whole space

Series
PDE Seminar
Time
Tuesday, November 8, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hao JiaUniversity of Minnesota

In recent years tremendous progress was made in understanding the ``inviscid damping" phenomenon near shear flows and vortices, which are steady states for the 2d incompressible Euler equation, especially at the linearized level. However, in real fluids viscosity plays an important role. It is natural to ask if incorporating the small but crucial viscosity term (and thus considering the Navier Stokes equation in a high Reynolds number regime instead of Euler equations) could change the dynamics in any dramatic way. It turns out that for the perturbative regime near a spectrally stable monotonic shear flows in an infinite periodic channel (to avoid boundary layers and long wave instabilities), we can prove uniform-in-viscosity inviscid damping. The proof introduces techniques that provide a unified treatment of the classical Orr-Sommerfeld equation in a way analogous to Rayleigh equations. 

Generic Mean Curvature Flow with Cylindrical Singularities

Series
PDE Seminar
Time
Tuesday, November 1, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ao SunUniversity of Chicago

We study the local and global dynamics of mean curvature flow with cylindrical singularities. We find the most generic dynamic behavior of such singularities, and show that the singularities with the most generic dynamic behavior are robust. We also show that the most generic singularities are isolated and type-I. Among applications, we prove that the singular set structure of the generic mean convex mean curvature flow has certain patterns, and the level set flow starting from a generic mean convex hypersurface has low regularity. This is joint work with Jinxin Xue (Tsinghua University)

Explicit formula of multi-solitary waves of the Benjamin–Ono equation

Series
PDE Seminar
Time
Tuesday, October 25, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ruoci SunGeorgia Tech

Every multi-soliton manifold of the Benjamin–Ono equation on the line is invariant under the Benjamin–Ono flow. Its generalized action–angle coordinates allow to solve this equation by quadrature and we have the explicit expression of every multi-solitary wave.

The existence of Prandtl-Batchelor flows on disk and annulus

Series
PDE Seminar
Time
Tuesday, October 4, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Speaker
Zhiwu LinGeorgia Tech

For steady two-dimensional incompressible flows with a single eddy (i.e. nested closed streamlines), Prandtl (1905) and Batchelor (1956) proposed that in the limit of vanishing viscosity the vorticity is constant in an inner region separated from the boundary layer. By constructing higher order approximate solutions of the Navier-Stokes equations and establishing the validity of Prandtl boundary layer expansion, we give a rigorous proof of the existence of Prandtl-Batchelor flows on a disk with the wall velocity slightly different from the rigid-rotation. The leading order term of the flow is the constant vorticity solution (i.e. rigid rotation) satisfying the Batchelor-Wood formula. For an annulus with wall velocities slightly different from the rigid-rotation, we also constructed Prandtl-Batchelor flows, whose leading order terms are rotating shear flows. This is a joint work with Chen Gao, Mingwen Fei and Tao Tao. 

Hardy spaces for Fourier integral operators

Series
PDE Seminar
Time
Tuesday, September 27, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Jan RozendaalIMPAN

It is well known that the wave operators cos(t (−∆)) and sin(t (−∆)) are not bounded on Lp(Rn), for n≥2 and 1≤p≤∞, unless p=2 or t=0. In fact, for 1 < p < ∞ these operators are bounded from W2s(p),p  to Lp(Rn) for s(p) := (n−1)/2 | 1/p − 1/2 |, and this exponent cannot be improved. This phenomenon  is symptomatic of the behavior of Fourier integral operators, a class of oscillatory operators which includes wave propagators, on Lp(Rn).

In this talk, I will introduce a class of Hardy spaces HFIOp (Rn), for p ∈ [1,∞],on which Fourier integral operators of order zero are bounded. These spaces also satisfy Sobolev embeddings which allow one to recover the optimal boundedness results for Fourier integral operators on Lp(Rn).

However, beyond merely recovering existing results, the invariance of these spaces under Fourier integral operators allows for iterative constructions that are not possible when working directly on Lp(Rn). In particular, we shall indicate how one can use this invariance to obtain the optimal fixed-time Lp regularity for wave equations with rough coefficients. We shall also mention the connection of these spaces to the phenomenon of local smoothing.

This talk is based on joint work with Andrew Hassell and Pierre Portal (Aus- tralian National University), and Zhijie Fan, Naijia Liu and Liang Song (Sun Yat- Sen University).

Necessary and Sufficient Conditions for Optimal Control of Semilinear Stochastic Partial Differential Equations

Series
PDE Seminar
Time
Tuesday, September 20, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lukas WesselsGeorgia Tech and Technische Universität Berlin

In this talk, we consider a finite-horizon optimal control problem of stochastic reaction-diffusion equations. First we apply the spike variation method which relies on introducing the first and second order adjoint state. We give a novel characterization of the second order adjoint state as the solution to a backward SPDE. Using this representation, we prove the maximum principle for controlled SPDEs. 

As another application of our characterization of the second order adjoint state, we derive additional necessary optimality conditions in terms of the value function. These results generalize a classical relationship between the adjoint states and the derivatives of the value function to the case of viscosity differentials.

The last part of the talk is devoted to sufficient optimality conditions. We show how the necessary conditions lead us directly to a non-smooth version of the classical verification theorem in the framework of viscosity solutions.

This talk is based on joint work with Wilhelm Stannat:  W. Stannat, L. Wessels, Peng's maximum principle for stochastic partial differential equations, SIAM J. Control Optim., 59 (2021), pp. 3552–3573 and W. Stannat, L. Wessels, Necessary and Sufficient Conditions for Optimal Control of Semilinear Stochastic Partial Differential Equations, https://arxiv.org/abs/2112.09639, 2022.

Non-uniqueness of Leray solutions of the forced Navier-Stokes equations

Series
PDE Seminar
Time
Tuesday, August 30, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Dallas AlbrittonPrinceton University

In a seminal work, Leray demonstrated the existence of global weak solutions to the Navier-Stokes equations in three dimensions. Are Leray's solutions unique? This is a fundamental question in mathematical hydrodynamics, which we answer in the negative, within the `forced' category, by exhibiting two distinct Leray solutions with zero initial velocity and identical body force. This is joint work with Elia Brué and Maria Colombo.

The mathematical theory of wave turbulence

Series
PDE Seminar
Time
Thursday, March 31, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Zaher HaniUniversity of Michigan

Please Note: Meeting also available online: https://gatech.zoom.us/j/92742811112

Wave turbulence is the theory of nonequilibrium statistical mechanics for wave systems. Initially formulated in pioneering works of Peierls, Hasselman, and Zakharov early in the past century, wave turbulence is widely used across several areas of physics to describe the statistical behavior of various interacting wave systems. We shall be interested in the mathematical foundation of this theory, which for the longest time had not been established.

The central objects in this theory are: the "wave kinetic equation" (WKE), which stands as the wave analog of Boltzmann’s kinetic equation describing interacting particle systems, and the "propagation of chaos” hypothesis, which is a fundamental postulate in the field that lacks mathematical justification. Mathematically, the aim is to provide a rigorous justification and derivation of those two central objects; This is Hilbert’s Sixth Problem for waves. The problem attracted considerable interest in the mathematical community over the past decade or so. This culminated in recent joint works with Yu Deng (University of Southern California), which provided the first rigorous derivation of the wave kinetic equation, and justified the propagation of chaos hypothesis in the same setting.

Meeting also available online: https://gatech.zoom.us/j/92742811112

Pages