Seminars and Colloquia by Series

Stability for the relative isoperimetric inequality inside an open, convex cone

Series
Math Physics Seminar
Time
Monday, April 30, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Emanuel IndreiUniversity of Texas
The relative isoperimetric inequality inside an open, convex cone C states that under a volume constraint, the ball intersected the cone minimizes the perimeter inside C. In this talk, we will show how one can use optimal transport theory to obtain this inequality, and we will prove a corresponding sharp stability result. This is joint work with Alessio Figalli.

Wave run-up on random and deterministic beaches

Series
Math Physics Seminar
Time
Monday, April 16, 2012 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Denis DukythCNRS/Univ. of Savoie
The phenomenon of wave run-up has the capital importance for the beach erosion, coastal protection and flood hazard estimation. In the present talk we will discuss two particular aspects of the wave run-up problem. In this talk we focus on the wave run-up phenomena on a sloping beach. In the first part of the talk we present a simple stochastic model of the bottom roughness. Then, we quantify the roughness effect onto the maximal run-up height using Monte-Carlo simulations. A critical comparison with more conventional approaches is also performed.In the second part of the talk we study the run-up of simple wave groups on beaches of various geometries. Some resonant amplification phenomena are unveiled. The maximal run-up height in resonant cases can be 20 times higher than in regular situations. Thus, this work can provide a possible mechanism of extreme tsunami run-up conventionally ascribed to "local site effects".References:Dutykh, D., Labart, C., & Mitsotakis, D. (2011). Long wave run-up on random beaches. Phys. Rev. Lett, 107, 184504.Stefanakis, T., Dias, F., & Dutykh, D. (2011). Local Runup Amplification by Resonant Wave Interactions. Phys. Rev. Lett., 107, 124502.

Riemann-Cartan Geometry of Non-linear Dislocation Mechanics

Series
Math Physics Seminar
Time
Monday, April 9, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Arash YavariSchool of Civil and Environmental Engineering, GT
In this seminar we will show that the nonlinear mechanics of solids with distributed dislocations can be formulated as a nonlinear elasticity problem provided that the material manifold – where the body is stress-free − is chosen appropriately. Choosing a Weitzenböck manifold (a manifold with a flat and metric-compatible affine connection that has torsion) with torsion tensor identified with the given dislocation density tensor the body would be stress-free in the material manifold by construction. For classical nonlinear elastic solids in order to calculate stresses one needs to know the changes of the relative distances, i.e. a metric in the material manifold is needed. For distributed dislocations this metric is the metric compatible with the Weitzenböck connection. We will present exact solutions for the residual stress field of several distributed dislocation problems in incompressible nonlinear elastic solids using Cartan's method of moving frames. We will also discuss zero-stress dislocation distributions in nonlinear dislocation mechanics.

Flame-pressure interactions and stretched laminar flame velocities: implicit simulation methods with realistic chemistry

Series
Math Physics Seminar
Time
Monday, March 26, 2012 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nadeem MalikKing Fahd University of Petroleum and Minerals
An implicit method [1, 2], TARDIS (Transient Advection Reaction Diffusion Implicit Simulations), has been developed that successfully couples the compressible flow to the comprehensive chemistry and multi-component transport properties. TARDIS has been demonstrated in application to two fundamental combustion problems of great interest. First, TARDIS was used to investigate stretched laminar flame velocities in eight flame configurations: outwardly and inwardly propagating H2/air and CH4/air in cylindrical and spherical geometries. Fractional power laws are observed between the velocity deficit and the flame curvature Second, the response of transient outwardly propagating premixed H2/air and CH4/air flames subjected to joint pressure and equivalence ratio oscillations were investigated. A fuller version of the abstract can be obtained from http://www.math.gatech.edu/~rll6/malik_abstract-Apr-2012.docx [1] Malik, N.A. and Lindstedt, R.P. The response of transient inhomogeneous flames to pressure fluctuations and stretch: planar and outwardly propagating hydrogen/air flames. Combust. Sci. Tech. 82(9), 2010. [2] Malik, N. A. “Fractional powers laws in stretched flame velocities in finite thickness flames: a numerical study using realistic chemistry”. Under review, (2012). [3] Markstein, G.H. Non-steady Flame Propagation. Pergamon Press, 1964. [4] Weis,M., Zarzalis, N., and Suntz, R. Experimental study of markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combust. Flame, 154:671--691, 2008.

Local circular law for non-Hermitian random matrices

Series
Math Physics Seminar
Time
Thursday, March 22, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anna MaltsevHausdorff Center, University of Bonn

Please Note: Note nonstandard day and time.

Consider an N by N matrix X of complex entries with iid real and imaginary parts with probability distribution h where h has Gaussian decay. We show that the local density of eigenvalues of X converges to the circular law with probability 1. More precisely, if we let a function f (z) have compact support in C and f_{\delta,z_0} (x) = f ( z-z^0 / \delta ) then the sequence of densities (1/N\delta^2) \int f_\delta d\mu_N converges to the circular law density (1/N\delta^2) \int f_\delta d\mu with probability 1. Here we show this convergence for \delta = N^{-1/8}, which is an improvement on the previously known results with \delta = 1. As a corollary, we also deduce that for square covariance matrices the number of eigenvalues in intervals of size in the intervals [a/N^2 , b/N^2] is smaller than log N with probability tending to 1.

Nodal count of eigenfunctions as index of instability

Series
Math Physics Seminar
Time
Monday, February 27, 2012 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gregory BerkolaikoTexas A&M Univ.
Zeros of vibrational modes have been fascinating physicists for several centuries. Mathematical study of zeros of eigenfunctions goes back at least to Sturm, who showed that, in dimension d=1, the n-th eigenfunction has n-1 zeros. Courant showed that in higher dimensions only half of this is true, namely zero curves of the n-th eigenfunction of the Laplace operator on a compact domain partition the domain into at most n parts (which are called "nodal domains"). It recently transpired that the difference between this "natural" number n of nodal domains and the actual values can be interpreted as an index of instability of a certain energy functional with respect to suitably chosen perturbations. We will discuss two examples of this phenomenon: (1) stability of the nodal partitions of a domain in R^d with respect to a perturbation of the partition boundaries and (2) stability of a graph eigenvalue with respect to a perturbation by magnetic field. In both cases, the "nodal defect" of the eigenfunction coincides with the Morse index of the energy functional at the corresponding critical point. Based on preprints arXiv:1107.3489 (joint with P.Kuchment and U.Smilansky) and arXiv:1110.5373

Positive commutator methods for unitary operators

Series
Math Physics Seminar
Time
Monday, February 6, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rafael Tiedra de AldecoaCatholic University of Chile
We present an improved version of commutator methods for unitary operators under a weak regularity condition. Once applied to a unitary operator, the method typically leads to the absence of singularly continuous spectrum and to the local finiteness of point spectrum. Some applications for Floquet operators and for cocycles over irrational rotations will be presented.

Symmetry results for Caffarelli-Kohn-Nirenberg inequalities

Series
Math Physics Seminar
Time
Monday, January 30, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael LossSchool of Mathematics, Georgia Tech
This talk is concerned with new symmetry results for the extremals of the Caffarelli-Kohn-Nirenberg inequalities in a range of parameters for which no explicit results of symmetry have previously been known. The method proceeds via spectral estimates. This is joint work with Jean Dolbeault and Maria Esteban.

Parallel heat transport in reverse shear magnetic fields

Series
Math Physics Seminar
Time
Monday, January 23, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BlazevskiUniversity of Texas
I will discuss local and nonlocal anisotropic heat transport along magnetic field lines in a tokamak, a device used to confine plasma undergoing fusion. I will give computational results that relate certain dynamical features of the magnetic field, e.g. resonance islands, chaotic regions, transport barriers, etc. to the asymptotic temperature profiles for heat transport along the magnetic field lines.

On the behavior at infinity of solutions to difference equations in Schroedinger form

Series
Math Physics Seminar
Time
Tuesday, December 6, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Lilian WongSoM, Georgia Tech
We offer several perspectives on the behavior at infinity of solutions of discrete Schroedinger equations. First we study pairs of discrete Schroedinger equations whose potential functions differ by a quantity that can be considered small in a suitable sense as the index n \rightarrow \infty. With simple assumptions on the growth rate of the solutions of the original system, we show that the perturbed system has a fundamental set of solutions with the same behavior at infinity, employing a variation-of-constants scheme to produce a convergent iteration for the solutions of the second equation in terms of those of the original one. We use the relations between the solution sets to derive exponential dichotomy of solutions and elucidate the structure of transfer matrices.Later, we present a sharp discrete analogue of the Liouville-Green (WKB) transformation, making it possible to derive exponential behavior at infinity of a single difference equation, by explicitly constructing a comparison equation to which our perturbation results apply. In addition, we point out an exact relationship connecting the diagonal part of the Green matrix to the asymptotic behavior of solutions. With both of these tools it is possible to identify an Agmon metric, in terms of which, in some situations, any decreasing solution must decrease exponentially. This is joint work with Evans Harrell.

Pages