Seminars and Colloquia by Series

Thursday, August 20, 2015 - 10:00 , Location: Skiles 005 , Prof. Dr. Ernst Stephan , Leibniz University Hannover , , Organizer: Molei Tao

Special time.

We consider the time-domain boundary element method for exteriorRobin type boundary value problems for the wave equation. We applya space-time Galerkin method, present a priori and a posteriori errorestimates, and derive an h-adaptive algorithm in space and time withmesh renement driven by error indicators of residual and hierarchicaltype.Numerical experiments are also given which underline our theoreticalresults. Special emphasis is given to numerical simulations of the soundradiation of car tyres.
Thursday, April 23, 2015 - 11:01 , Location: Skiles 005 , Yan Guo , Brown University , Organizer: Zhiwu Lin
As the cornerstone of two-fluid models in plasma theory, Euler-Maxwell (Euler-Poisson) system describes the dynamics of compressible ion and electron fluids interacting with their own self-consistent electromagnetic field. It is also the origin of many famous dispersive PDE such as KdV, NLS, Zakharov, ...etc. The electromagnetic interaction produces plasma frequencies which enhance the dispersive effect, so that smooth initial data with small amplitude will persist forever for the Euler-Maxwell system, suppressing any possible shock formation. This is in stark contrast to the classical Euler system for a compressible neutral fluid, for which shock waves will develop even for small smooth initial data. A survey along this direction for various two-fluid models will be given during this talk.
Thursday, April 16, 2015 - 11:00 , Location: Skiles 005 , Prof. Vili Totik , Szeged University (Hungary) and University of South Florida , , Organizer: Doron Lubinsky
Bernstein's inequality connecting the norms of a (trigonometric) polynomial with the norm of its derivative is 100 years old. The talk will discuss some recent developments concerning Bernstein's inequality: inequalities with doubling weights, inequalities on general compact subsets of the real line or on a system of Jordan curves. The beautiful Szego-Schaake–van der Corput generalization will also be mentioned along with some of its recent variants.
Thursday, April 9, 2015 - 11:00 , Location: Skiles 005 , Haynes Miller , MIT , Organizer: Kirsten Wickelgren
Much effort in the past several decades has gone into lifting various algebraic structures into a topological context. I will describe one such lifting: that of the arithmetic theory of elliptic curves. The result is a rich and highly structured family of cohomology theories collectively known as elliptic cohomology. By forming "global sections" one is led to a topological enrichment of the ring of modular forms. Geometric interpretations of these theories are enticing but still conjectural at best.
Thursday, February 19, 2015 - 11:00 , Location: Skiles 005 , Professor Izabella Laba , University of British Columbia , Organizer: Martin Short
Singular and oscillatory integral estimates, such as maximal theorems and restriction estimates for measures on hypersurfaces, have long been a central topic in harmonic analysis. We discuss the recent work by the speaker and her collaborators on the analogues of such results for singular measures supported on fractal sets. The common thread is the use of ideas from additive combinatorics. In particular, the additive-combinatorial notion of "pseudorandomness" for fractals turns out to be an appropriate substitute for the curvature of manifolds.
Thursday, February 12, 2015 - 11:00 , Location: Skiles 005 , Elizabeth Meckes , Case Western Reserve University , Organizer: Kirsten Wickelgren
Dvoretzky's theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean.  A related measure-theoretic phenomenon has long been observed:the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A natural question is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k? In this talk I will discuss a result showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2!).  The talk will not assume much background beyond basic probability and analysis; in particular, no prior knowledge of Dvoretzky's theorem is needed.
Friday, December 5, 2014 - 16:00 , Location: Skiles 006 , Danny Calegari , University of Chicago , Organizer: John Etnyre

Kick-off of the <a href="">Tech Topology Conference</a>, December 5-7, 2014

In 1985, Barnsley and Harrington defined a "Mandelbrot Set" M for pairs of similarities -- this is the set of complex numbers z with norm less than 1 for which the limit set of the semigroup generated by the similarities x -> zx and x -> z(x-1)+1 is connected. Equivalently, M is the closure of the set of roots of polynomials with coefficients in {-1,0,1}. Barnsley and Harrington already noted the (numerically apparent) existence of infinitely many small "holes" in M, and conjectured that these holes were genuine. These holes are very interesting, since they are "exotic" components of the space of (2 generator) Schottky semigroups. The existence of at least one hole was rigorously confirmed by Bandt in 2002, but his methods were not strong enough to show the existence of infinitely many holes; one difficulty with his approach was that he was not able to understand the interior points of M, and on the basis of numerical evidence he conjectured that the interior points are dense away from the real axis. We introduce the technique of traps to construct and certify interior points of M, and use them to prove Bandt's Conjecture. Furthermore, our techniques let us certify the existence of infinitely many holes in M. This is joint work with Sarah Koch and Alden Walker.
Thursday, December 4, 2014 - 11:00 , Location: Skiles 005 , Sybilla Beckman , Josiah Meigs Distinguished Teaching Professor of Mathematics, UGA , , Organizer:
In this presentation I will show some of the surprising depth and complexity of elementary- and middle-grades mathematics, much of which has been revealed by detailed studies into how students think about mathematical ideas. In turn, research into students' thinking has led to the development of teaching-learning paths at the elementary grades, which are reflected in the Common Core State Standards for Mathematics. These teaching-learning paths are widely used in mathematically high-performing countries but are not well understood in this country. At the middle grades, ideas surrounding ratio and proportional relationships are critical and central to all STEM disciplines, but research is needed into how students and teachers can reason about these ideas. Although research in mathematics education is necessary, it is not sufficient for solving our educational problems. For the mathematics teaching profession to be strong, we need a system in which all of us who teach mathematics, at any level, take collective ownership of and responsibility for mathematics teaching. 
Tuesday, November 18, 2014 - 11:00 , Location: Skiles 005 , Luis Vega , BCAM-Basque Center for Applied Mathematics (Scientific Director) and University of the Basque Country UPV/EHU , , Organizer:
In the first part of the talk I shall present a linear model based on the Schrodinger equation with constant coefficient and periodic boundary conditions that explains the so-called Talbot effect in optics. In the second part I will make a connection of this Talbot effect with turbulence through the Schrodinger map which is a geometric non-linear partial differential equation.
Thursday, November 13, 2014 - 11:00 , Location: Skiles 005 , Professor Andre Martinez-Finkelshtein , Universidad de Almería , Organizer: Martin Short
Random matrix theory (RMT) is a very active area of research and a greatsource of exciting and challenging problems for specialists in manybranches of analysis, spectral theory, probability and mathematicalphysics. The analysis of the eigenvalue distribution of many random matrix ensembles leads naturally to the concepts of determinantal point processes and to their particular case, biorthogonal ensembles, when the main object to study, the correlation kernel, can be written explicitly in terms of two sequences of mutually orthogonal functions.Another source of determinantal point processes is a class of stochasticmodels of particles following non-intersecting paths. In fact, theconnection of these models with the RMT is very tight: the eigenvalues of the so-called Gaussian Unitary Ensemble (GUE) and the distribution ofrandom particles performing a Brownian motion, departing and ending at the origin under condition that their paths never collide are, roughlyspeaking, statistically identical.A great challenge is the description of the detailed asymptotics of these processes when the size of the matrices (or the number of particles) grows infinitely large. This is needed, for instance, for verification of different forms of "universality" in the behavior of these models. One of the rapidly developing tools, based on the matrix Riemann-Hilbert characterization of  the correlation kernel, is the associated non-commutative steepest descent analysis of Deift and Zhou.Without going into technical details, some ideas behind this technique will be illustrated in the case of a model of squared Bessel nonintersectingpaths.