- You are here:
- GT Home
- Home
- News & Events

Series: School of Mathematics Colloquium

Special time.

We consider the time-domain boundary element method for exteriorRobin type boundary value problems for the wave equation. We applya space-time Galerkin method, present a priori and a posteriori errorestimates, and derive an h-adaptive algorithm in space and time withmesh renement driven by error indicators of residual and hierarchicaltype.Numerical experiments are also given which underline our theoreticalresults. Special emphasis is given to numerical simulations of the soundradiation of car tyres.

Series: School of Mathematics Colloquium

As the cornerstone of two-fluid models in plasma theory,
Euler-Maxwell (Euler-Poisson) system describes the dynamics of compressible
ion and electron fluids interacting with their own self-consistent electromagnetic field. It is
also the origin of many famous dispersive PDE such as KdV, NLS, Zakharov,
...etc. The electromagnetic interaction produces plasma frequencies which enhance
the dispersive effect, so that smooth initial data with small amplitude
will persist forever for the Euler-Maxwell system, suppressing any possible shock
formation. This is in stark contrast to the classical Euler system for a
compressible neutral fluid, for which shock waves will develop
even for small smooth initial data. A survey along this direction for
various two-fluid models will be given during this talk.

Series: School of Mathematics Colloquium

Bernstein's inequality connecting the norms of a (trigonometric) polynomial
with the norm of its derivative is 100 years old. The talk will discuss some
recent developments concerning Bernstein's inequality: inequalities
with doubling weights, inequalities on general compact subsets of
the real line or on a system of Jordan curves.
The beautiful Szego-Schaake–van der Corput generalization
will also be mentioned along with some of its recent variants.

Series: School of Mathematics Colloquium

Much effort in the past several decades has gone into lifting various algebraic structures into a topological context. I will describe one such lifting: that of the arithmetic theory of elliptic curves. The result is a rich and highly structured family of cohomology theories collectively known as elliptic cohomology. By forming "global sections" one is led to a topological enrichment of the ring of modular forms. Geometric interpretations of these theories are enticing but still conjectural at best.

Series: School of Mathematics Colloquium

Singular and oscillatory integral estimates, such as maximal theorems and restriction estimates for measures on hypersurfaces, have long been a central topic in harmonic analysis. We discuss the recent work by the speaker and her collaborators on the analogues of such results for singular measures supported on fractal sets. The common thread is the use of ideas from additive combinatorics. In particular, the additive-combinatorial notion of "pseudorandomness" for fractals turns out to be an appropriate substitute for the curvature of manifolds.

Series: School of Mathematics Colloquium

Dvoretzky's theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean. A related measure-theoretic phenomenon has long been observed:the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A natural question is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k? In this talk I will discuss a result showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2!). The talk will not assume much background beyond basic probability and analysis; in particular, no prior knowledge of Dvoretzky's theorem is needed.

Series: School of Mathematics Colloquium

Kick-off of the <a href="http://ttc.gatech.edu">Tech Topology Conference</a>, December 5-7, 2014

In 1985, Barnsley and Harrington defined a "Mandelbrot Set" M
for pairs of similarities -- this is the set of complex numbers z
with norm less than 1 for which the limit set of the semigroup
generated by the similarities x -> zx and x -> z(x-1)+1 is
connected. Equivalently, M is the closure of the set of roots of
polynomials with coefficients in {-1,0,1}. Barnsley and Harrington
already noted the (numerically apparent) existence of infinitely
many small "holes" in M, and conjectured that these holes were
genuine. These holes are very interesting, since they are "exotic"
components of the space of (2 generator) Schottky semigroups. The
existence of at least one hole was rigorously confirmed by Bandt in
2002, but his methods were not strong enough to show the existence
of infinitely many holes; one difficulty with his approach was that
he was not able to understand the interior points of M, and on the
basis of numerical evidence he conjectured that the interior points
are dense away from the real axis. We introduce the technique of
traps to construct and certify interior points of M, and use
them to prove Bandt's Conjecture. Furthermore, our techniques let
us certify the existence of infinitely many holes in M. This is
joint work with Sarah Koch and Alden Walker.

Series: School of Mathematics Colloquium

In this presentation I will show some of the surprising depth and complexity of elementary- and middle-grades mathematics, much of which has been revealed by detailed studies into how students think about mathematical ideas. In turn, research into students' thinking has led to the development of teaching-learning paths at the elementary grades, which are reflected in the Common Core State Standards for Mathematics. These teaching-learning paths are widely used in mathematically high-performing countries but are not well understood in this country. At the middle grades, ideas surrounding ratio and proportional relationships are critical and central to all STEM disciplines, but research is needed into how students and teachers can reason about these ideas. Although research in mathematics education is necessary, it is not sufficient for solving our educational problems. For the mathematics teaching profession to be strong, we need a system in which all of us who teach mathematics, at any level, take collective ownership of and responsibility for mathematics teaching.

Series: School of Mathematics Colloquium

In the first part of the talk I shall present a linear model based
on the Schrodinger equation with constant coefficient and periodic
boundary conditions that explains the so-called Talbot effect in optics.
In the second part I will make a connection
of this Talbot effect with turbulence through the Schrodinger map which
is a geometric non-linear partial differential equation.

Series: School of Mathematics Colloquium

Random matrix theory (RMT) is a very active area of research and a greatsource of exciting and challenging problems for specialists in manybranches of analysis, spectral theory, probability and mathematicalphysics. The analysis of the eigenvalue distribution of many random matrix ensembles leads naturally to the concepts of determinantal point processes and to their particular case, biorthogonal ensembles, when the main object to study, the correlation kernel, can be written explicitly in terms of two sequences of mutually orthogonal functions.Another source of determinantal point processes is a class of stochasticmodels of particles following non-intersecting paths. In fact, theconnection of these models with the RMT is very tight: the eigenvalues of the so-called Gaussian Unitary Ensemble (GUE) and the distribution ofrandom particles performing a Brownian motion, departing and ending at the origin under condition that their paths never collide are, roughlyspeaking, statistically identical.A great challenge is the description of the detailed asymptotics of these processes when the size of the matrices (or the number of particles) grows infinitely large. This is needed, for instance, for verification of different forms of "universality" in the behavior of these models. One of the rapidly developing tools, based on the matrix Riemann-Hilbert characterization of the correlation kernel, is the associated non-commutative steepest descent analysis of Deift and Zhou.Without going into technical details, some ideas behind this technique will be illustrated in the case of a model of squared Bessel nonintersectingpaths.