Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
Trisections of 4-manifolds relative to their boundary were introduced by Gay and Kirby in 2012. They are decompositions of 4-manifolds that induce open book decomposition in the bounding 3-manifolds. This talk will focus on diagrams of relative trisections and will be divided in two. In the first half I will focus on trisections as fillings of open book decompositions and I will present different fillings of different open book decompositions of the Poincare homology sphere.
Series
Time
for
Location
Speaker
Organizer
Dehn surgery is a fundamental tool for constructing oriented 3-Manifolds. If we fix a knot K in an oriented 3-manifold Y and do surgeries with distinct slopes r and s, we can ask under which conditions the resulting oriented manifold Y(r) and Y(s) might be orientation preserving homeomorphic. The cosmetic surgery conjecture state that if the knot exterior is boundary irreducible then this can't happen. My talk will be about the case where Y is an homology sphere and K is an hyperbolic knot.
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
In this lecture series, held jointly (via video conference) with the University of Buffalo and the University of Arkansas, we aim to understand the lecture notes by Vincent Guirardel on geometric small cancellation. The lecture notes can be found here: https://perso.univ-rennes1.fr/vincent.guirardel/papiers/lecture_notes_pcmi.pdf This week we will begin Lecture 4.
Series
Time
for
Location
Speaker
Organizer
Given a surface, intersection information about the simple closed curves on the surface is encoded in its curve graph. Vertices are homotopy classes of curves, and edges connect vertices corresponding to curves with disjoint representatives. We can wonder what subgraphs of the curve graph are possible for a given surface. For example, if we fix a surface, then a graph with sufficiently large clique number cannot be a subgraph of its curve graph. This is because there are only so many distinct and mutually disjoint curves in a given surface.
Series
Time
for
Location
Speaker
Organizer
For every surface (sphere, torus, etc.) there is an associated graph called the curve graph. The vertices are curves in the surface and two vertices are connected by an edge if the curves are disjoint. The curve graph turns out to be very important in the study of surfaces. Even though it is well-studied, it is quite mysterious. Here are two sample problems: If you draw two curves on a surface, how far apart are they as edges of the curve graph? If I hand you a surface, can you draw two curves that have distance bigger than three?
Series
Time
for
Location
Speaker
Organizer
We show that an embedding of a (small) ball into a contact manifold is contact if and only if it preserves the (modified) shape invariant. The latter is, in brief, the set of all cohomology classes that can be represented by the pull-back (to a closed one-form) of a contact form by a coisotropic embedding of a fixed manifold (of maximal dimension) and of a given homotopy type.
Series
Time
for
Location
Speaker
Organizer
In 1988, Penner conjectured that all pseudo-Anosov mapping classes arise up to finite power from a construction named after him. This conjecture was known to be true on some simple surfaces, including the torus, but has otherwise remained open. I will sketch the proof (joint work with Hyunshik Shin) that the conjecture is false for most surfaces.
Series
Time
for
Location
Speaker
Organizer
In this lecture series, held jointly (via video conference) with the University of Buffalo and the University of Arkansas, we aim to understand the lecture notes by Vincent Guirardel on geometric small cancellation. The lecture notes can be found here: https://perso.univ-rennes1.fr/vincent.guirardel/papiers/lecture_notes_pcmi.pdf This week we will compete the first of two steps in proving the small cancellation theorem (Lecture 3).

Pages

Subscribe to RSS - Geometry and Topology