Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
In this series of talks I will descibe a general proceedure to construct homology theories using analytic/geometric techiques. We will then consider Morse homology in some detail and a simple example of this process. Afterwords we will consider other situations like Floer theory and possibly contact homology.
Series
Time
for
Location
Speaker
Organizer
In this series of talks I will descibe a general proceedure to construct homology theories using analytic/geometric techiques. We will then consider Morse homology in some detail and a simple example of this process. Afterwords we will consider other situations like Floer theory and possibly contact homology.
Series
Time
for
Location
Speaker
Organizer
In this series of talks I will descibe a general proceedure to construct homology theories using analytic/geometric techiques. We will then consider Morse homology in some detail and a simple example of this process. Afterwords we will consider other situations like Floer theory and possibly contact homology.
Series
Time
for
Location
Speaker
Organizer
The point-pushing subgroup of the mapping class group of a surface with a marked point can be considered topologically as the subgroup that pushes the marked point about loops in the surface. Birman demonstrated that this subgroup is abstractly isomorphic to the fundamental group of the surface, \pi_1(S). We can characterize this point-pushing subgroup algebraically as the only normal subgroup inside of the mapping
Series
Time
for
Location
Speaker
Organizer
A foundational result in the study of contact geometry and Legendrian knots is Eliashberg and Fraser's classification of Legendrian unknots They showed that two homotopy-theoretic invariants - the Thurston-Bennequin number and rotation number - completely determine a Legendrian unknot up to isotopy. Legendrian spatial graphs are a natural generalization of Legendrian knots. We prove an analogous result for planar Legendrian graphs.
Series
Time
for
Location
Speaker
Organizer
The Grothendieck group K_0 of a commutative ring is well-known to be a \lambda-ring: although the exterior powers are non-additive, they induce maps on K_0 satisfying various universal identities. The \lambda-operations are known to give homomorphisms on higher K-groups. In joint work in progress with Barwick, Glasman, and Nikolaus, we give a general framework for such operations. Namely, we show that the K-theory space is naturally functorial with respect to polynomial functors, and describe a universal property of the extended K-theory functor.
Series
Time
for
Location
Speaker
Organizer
We are going to discuss one of the open problems of geometric tomography about projections. Along with partial previous results, the proof of the problem below will be investigated.Let $2\le k\le d-1$ and let $P$ and $Q$ be two convex polytopes in ${\mathbb E^d}$. Assume that their projections, $P|H$, $Q|H$, onto every $k$-dimensional subspace $H$, are congruent. We will show that $P$ and $Q$ or $P$ and $-Q$ are translates of each other.
Series
Time
for
Location
Speaker
Organizer
We will review the definition of the Chekanov-Eliashberg differentialgraded algebra for Legendrian knots in R^3 and look at examples tounderstand a few of the invariants that come from Legendrian contacthomology.
Series
Time
for
Location
Speaker
Organizer
Khovanov homology is a powerful and computable homology theory for links which extends to tangles and tangle cobordisms. It is closely, but perhaps mysteriously, related to many flavors of Floer homology. Szabó has constructed a combinatorial spectral sequence from Khovanov homology which (conjecturally) converges to a Heegaard Floer-theoretic object. We will discuss work in progress to extend Szabó’s construction to an invariant of tangles and surfaces in the four-sphere.
Series
Time
for
Location
Speaker
Organizer
We will review the definition of the Chekanov-Eliashberg differentialgraded algebra for Legendrian knots in R^3 and look at examples tounderstand a few of the invariants that come from Legendrian contacthomology.

Pages

Subscribe to RSS - Geometry and Topology