Seminars and Colloquia by Series

Evasiveness conjecture and topological methods in graph theory I

Series
Graph Theory Working Seminar
Time
Tuesday, February 8, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
James AndersonGeorgia Institute of Technology

In the first talk of this seminar series, we follow the manuscript of Carl Miller and introduce the concept of elusive graph properties—those properties for which any edge-querying algorithm requires all possible queries in the worst case. Karp conjectured in 1973 that all nontrivial monotonic graph properties are elusive, and a celebrated theorem by Kahn in 1984 used topological fixed-point methods to show the conjecture is true in the case of graphs with order equal to a prime power. To set the stage for the proof of this result in later talks, we introduce monotone graph properties and their connection to collapsible simplicial complexes.

On sphere packings and the hard sphere model

Series
Job Candidate Talk
Time
Tuesday, February 8, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/552606446/5315
Speaker
Will PerkinsUniversity of Illinois, Chicago
The classic sphere packing problem is to determine the densest possible packing of non-overlapping congruent spheres in Euclidean space.  The problem is trivial in dimension 1, straightforward in dimension 2, but a major challenge or mystery in higher dimensions, with the only other solved cases being dimensions 3, 8, and 24.  The hard sphere model is a classic model of a gas from statistical physics, with particles interacting via a hard-core pair potential.  It is believed that this model exhibits a crystallization phase transition in dimension 3, giving a purely geometric explanation for freezing phenomena in nature, but this remains an open mathematical problem. The sphere packing problem and the hard sphere model are closely linked through the following rough rephrasing of the phase transition question: do typical sphere packings at densities just below the maximum density align with a maximum packing or are they disordered?  
 
I will present results on high-dimensional sphere packings and spherical codes and new bounds for the absence of phase transition at low densities in the hard sphere model.  The techniques used take the perspective of algorithms and optimization and can be applied to problems in extremal and enumerative combinatorics as well.
 
 

Stable commutator length on big mapping class groups

Series
Geometry Topology Seminar
Time
Monday, February 7, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Elizabeth FieldUniversity of Utah

The stable commutator length function measures the growth rate of the commutator length of powers of elements in the commutator subgroup of a group. In this talk, we will discuss the stable commutator length function on the mapping class groups of infinite-type surfaces which satisfy a certain topological characterization. In particular, we will show that stable commutator length is a continuous function on these big mapping class groups, as well as that the commutator subgroups of these big mapping class groups are both open and closed. Along the way to proving our main results, we will discuss certain topological properties of a class of infinite-type surfaces and their end spaces which may be of independent interest. This talk represents joint work with Priyam Patel and Alexander Rasmussen.

Coarse – Graining of stochastic system

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 7, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/457724603/4379
Speaker
Prof. Xingjie "Helen" LiUNC Charlotte


Efficient simulation of SDEs is essential in many applications, particularly for ergodic
systems that demand efficient simulation of both short-time dynamics and large-time
statistics. To achieve the efficiency, dimension reduction is often required in both space
and time. In this talk, I will talk about our recent work on both spatial and temporal
reductions.
For spatial dimension reduction, the Mori-Zwanzig formalism is applied to derive
equations for the evolution of linear observables of the Langevin dynamics for both
overdamped and general cases.
For temporal dimension reduction, we introduce a framework to construct inference-
based schemes adaptive to large time-steps (ISALT) from data, achieving a reduction in
time by several orders of magnitudes.
This is a joint work with Dr. Thomas Hudson from the University of Warwick, UK; Dr. Fei
Lu from the Johns Hopkins University and Dr Xiaofeng Felix Ye from SUNY at Albany.

Hyperbolic generalization of linear algebra

Series
Algebra Student Seminar
Time
Friday, February 4, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006, or ONLINE
Speaker
Shengding SunGeorgia Tech

We will introduce the machinery of hyperbolic polynomial, and see how it can help us generalize classical linear algebra theorems and inequalities on symmetric matrices, including Hadamard-Fischer inequality, Koteljanskii's inequality and Schur-Horn theorem (last one is conjectured but not proved). Joint work with Greg Blekherman, Mario Kummer, Raman Sanyal and Kevin Shu.

 

Team link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1643388106130?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Understanding Statistical-vs-Computational Tradeoffs via Low-Degree Polynomials

Series
Job Candidate Talk
Time
Thursday, February 3, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/500115320/1408
Speaker
Alex WeinUC Berkeley/Simons Institute

A central goal in modern data science is to design algorithms for statistical inference tasks such as community detection, high-dimensional clustering, sparse PCA, and many others. Ideally these algorithms would be both statistically optimal and computationally efficient. However, it often seems impossible to achieve both these goals simultaneously: for many problems, the optimal statistical procedure involves a brute force search while all known polynomial-time algorithms are statistically sub-optimal (requiring more data or higher signal strength than is information-theoretically necessary). In the quest for optimal algorithms, it is therefore important to understand the fundamental statistical limitations of computationally efficient algorithms.

I will discuss an emerging theoretical framework for understanding these questions, based on studying the class of "low-degree polynomial algorithms." This is a powerful class of algorithms that captures the best known poly-time algorithms for a wide variety of statistical tasks. This perspective has led to the discovery of many new and improved algorithms, and also many matching lower bounds: we now have tools to prove failure of all low-degree algorithms, which provides concrete evidence for inherent computational hardness of statistical problems. This line of work illustrates that low-degree polynomials provide a unifying framework for understanding the computational complexity of a wide variety of statistical tasks, encompassing hypothesis testing, estimation, and optimization.

Teichmüller space via skein algebras

Series
Geometry Topology Student Seminar
Time
Wednesday, February 2, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 (also in BlueJeans)
Speaker
Tao YuGeorgia Tech

Quantum Teichmüller space was first introduced by Chekhov and Fock as a version of 2+1d quantum gravity. The definition was translated over time into an algebra of curves on surfaces, which coincides with an extension of the Kauffman bracket skein algebra. In this talk, we will discuss the relation between the Teichmüller space and the Kauffman bracket, and time permitting, the quantized version of this correspondence.

Meeting URL: https://bluejeans.com/106460449/5822

 

Persistence Exponents for Gaussian stationary functions

Series
Analysis Seminar
Time
Wednesday, February 2, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
ONLINE (Zoom link in abstract)
Speaker
Naomi FeldheimBar-Ilan University

Let f be a real-valued Gaussian stationary process, that is, a random function which is invariant to real shifts and whose marginals have multi-normal distribution.

What is the probability that f remains above a certain fixed line for a long period of time?

We give simple spectral(and almost tight) conditions under which this probability is asymptotically exponential, that is, that the limit of log P(f>a on [0,T])/ T, as T approaches infinity, exists.

This limit defines "the persistence exponent", and we further show it is continuous in the level a, in the spectral measure corresponding to f (in an appropriate sense), and is unaffected by the singular part of the spectral measure.

Proofs rely on tools from harmonic analysis.

Joint work with Ohad Feldheim and Sumit Mukherjee, arXiv:2112.04820.

The talk will be on Zoom via the link

https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09

Algebraic/Arithmetic properties of curves and Galois cohomology 

Series
Job Candidate Talk
Time
Wednesday, February 2, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Wanlin LiCRM Montreal

A lot of the algebraic and arithmetic information of a curve is contained in its interaction with the Galois group. This draws inspiration from topology, where given a family of curves over a base B, the fundamental group of B acts on the cohomology of the fiber. As an arithmetic analogue, given an algebraic curve C defined over a non-algebraically closed field K, the absolute Galois group of K acts on the etale cohomology of the geometric fiber and this action gives rise to various Galois cohomology classes. In this talk, we discuss how to use these classes to detect algebraic/arithmetic properties of the curve, such as the rational points (following Grothendieck's section conjecture), whether the curve is hyperelliptic, and the set of ``supersingular'' primes.

https://bluejeans.com/270212862/6963

Human locomotion and crowd-bridge interactions

Series
Mathematical Biology Seminar
Time
Wednesday, February 2, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Igor BelykhNeuroscience Institute, Georgia State University

Please Note: Meeting Link: https://bluejeans.com/426529046/8775

In this talk, I will discuss recent advances and challenges in modelling complex dynamics of pedestrian-bridge interactions,  These challenges include a proper understanding of the biomechanics of walking on a moving structure and of the psychology of walking in crowds. I will explain the fundamental mechanism behind pedestrian-induced lateral instability of bridges due to some positive feedback from uncorrelated walkers whose foot forces do not cancel each other but create a bias. I will also present the results of our past and ongoing work that reveal the role of foot placement strategies and social force dynamics in initiating bridge instabilities. In particular, I will show that  (i)  paradoxically, depending on the human balance law (and the frequency of bridge motion), larger crowds can stabilize  bridge motions and (ii)  crowd heterogeneity can promote large vibrations of bridges.

Recording link:  https://bluejeans.com/s/h0TpdyBRatJ 

Pages