Seminars and Colloquia by Series

Working Seminar Organizational Meeting

Series
Graph Theory Working Seminar
Time
Tuesday, February 1, 2022 - 15:45 for 30 minutes
Location
Skiles 005
Speaker

The goal of the meeting is to decide what paper(s) we will be reading and make a rough plan going forward. The following two possibilities were suggested:

  • Topological methods in graph theory and their application to the evasiveness conjecture using these lecture notes by Carl Miller.
  • Furstenberg's proof of Szemeredi's theorem via ergodic theory using Yufei Zhao's lecture notes.

Other suggestions are also welcome!

Stein property of complex-hyperbolic Kleinian groups

Series
Geometry Topology Seminar
Time
Monday, January 31, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Subhadip DeyYale university

Let M be a complex-hyperbolic n-manifold, i.e. a quotient of the complex-hyperbolic n-space $\mathbb{H}^n_\mathbb{C}$ by a torsion-free discrete group of isometries, $\Gamma = \pi_1(M)$. Suppose that M is  convex-cocompact, i.e. the convex core of M is a nonempty compact subset. In this talk, we will discuss a sufficient condition on $\Gamma$ in terms of the growth-rate of its orbits in $\mathbb{H}^n_\mathbb{C}$ for which M is a Stein manifold. We will also talk about some interesting questions related to this result. This is a joint work with Misha Kapovich.

https://bluejeans.com/196544719/9518

How to Break the Curse of Dimensionality

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 31, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/457724603/4379
Speaker
Ming-Jun LaiUniversity of Georgia

We first review the problem of the curse of dimensionality when approximating multi-dimensional functions. Several approximation results from Barron, Petrushev,  Bach, and etc . will be explained. 

Then we present two approaches to break the curse of the dimensionality: one is based on probability approach explained in Barron, 1993 and the other one is based on a deterministic approach using the Kolmogorov superposition theorem.   As the Kolmogorov superposition theorem has been used to explain the approximation of neural network computation, I will use it to explain why the deep learning algorithm works for image classification.
In addition, I will introduce the neural network approximation based on higher order ReLU functions to explain the powerful approximation of multivariate functions using  deep learning algorithms with  multiple layers.

On Gapped Ground State Phases of Quantum Lattice Models

Series
Job Candidate Talk
Time
Monday, January 31, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Amanda YoungTechnical University Munich

Quantum spin systems are many-body physical models where particles are bound to the sites of a lattice. These are widely used throughout condensed matter physics and quantum information theory, and are of particular interest in the classification of quantum phases of matter. By pinning down the properties of new exotic phases of matter, researchers have opened the door to developing new quantum technologies. One of the fundamental quantitites for this classification is whether or not the Hamiltonian has a spectral gap above its ground state energy in the thermodynamic limit. Mathematically, the Hamiltonian is a self-adjoint operator and the set of possible energies is given by its spectrum, which is bounded from below. While the importance of the spectral gap is well known, very few methods exist for establishing if a model is gapped, and the majority of known results are for one-dimensional systems. Moreover, the existence of a non-vanishing gap is generically undecidable which makes it necessary to develop new techniques for estimating spectral gaps. In this talk, I will discuss my work proving non-vanishing spectral gaps for key quantum spin models, and developing new techniques for producing lower bound estimates on the gap. Two important models with longstanding spectral gap questions that I recently contributed progress to are the AKLT model on the hexagonal lattice, and Haldane's pseudo-potentials for the fractional quantum Hall effect. Once a gap has been proved, a natural next question is whether it is typical of a gapped phase. This can be positively answered by showing that the gap is robust in the presence of perturbations. Ensuring the gap remains open in the presence of perturbations is also of interest, e.g., for the development of robust quantum memory. A second topic I will discuss is my research studying spectral gap stability.

URL for the talk: https://bluejeans.com/602513114/7767

 

 

Realizable Learning is All You Need

Series
ACO Student Seminar
Time
Friday, January 28, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Max HopkinsUCSD

Please Note: Link: https://bluejeans.com/520769740/

The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning theory. With variants ranging from classical settings like PAC learning and regression to recent trends such as adversarially robust and private learning, it’s surprising we still lack a unifying theory explaining these results. 

In this talk, we'll introduce exactly such a framework: a simple, model-independent blackbox reduction between agnostic and realizable learnability that explains their equivalence across a wide host of classical models. We’ll discuss how this reduction extends our understanding to traditionally difficult settings such as learning with arbitrary distributional assumptions and general loss, and look at some applications beyond agnostic learning as well (e.g. to privacy). Finally, we'll end by surveying a few nice open problems in the area.

Based on joint work with Daniel Kane, Shachar Lovett, and Gaurav Mahajan.

Finite Automata and Transfer Matrices

Series
Algebra Student Seminar
Time
Friday, January 28, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Trevor GunnGeorgia Tech

This talk is a primer on solving certain kinds of counting problems through regular languages, finite automata and transfer matrices. Example problems: count the number of binary strings that contain "0110", count the number of binary strings that contain 0, 1, 2,... copies of "0110," a derivation of the negative binomial distribution function.

The only requirements for this talk is a basic familiarity with directed graphs, matrices and generating functions.

Teams Link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1643050072413?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%22dc6c6c03-84d2-497a-95c0-d85af9cbcf28%22%7d

Stability and Instability of the Kelvin-Stuart Cat's Eyes Flow to the 2D Euler's Equation

Series
Dissertation Defense
Time
Friday, January 28, 2022 - 09:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Shasha LiaoGeorgia Tech

The linear stability of a family of Kelvin-Stuart Cat's eyes flows of 2D Euler equation was studied both analytically and numerically. We proved linear stability under co-periodic perturbations and linear instability under multi-periodic perturbations. These results were first obtained numerically using spectral methods and then proved analytically.

The Bluejeans link is: https://bluejeans.com/353383769/0224

Is there a smallest algebraic integer?

Series
Job Candidate Talk
Time
Thursday, January 27, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Vesselin DimitrovUniversity of Toronto

The Schinzel-Zassenhaus conjecture describes the narrowest collar width around the unit circle that contains a full set of conjugate algebraic integers of a given degree, at least one of which lies off the unit circle. I will explain what this conjecture precisely says and how it is proved. The method involved in this solution turns out to yield some other new results whose ideas I will describe, including to the closest interlacing of Frobenius eigenvalues for abelian varieties over finite fields, the closest separation of Salem numbers in a fixed interval, and the distribution of the short Kobayashi geodesics in the Siegel modular variety.

https://bluejeans.com/476147254/8544

An adaptation of Kohler-Jobin rearrangement technique with fixed torsional rigidity to the Gaussian space

Series
Analysis Seminar
Time
Wednesday, January 26, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
ONLINE (Zoom link in abstract)
Speaker
Orli HerscoviciGeorgia Tech

Please Note:

In this talk, we show an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we present the Gaussian analogue of the Kohler-Jobin's resolution of a conjecture of Polya-Szego: when the Gaussian torsional rigidity of a (convex) domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a ``modified''  torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.

We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.
 

The seminar will be held on Zoom via the link

https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09

Inflation of poorly conditioned zeros of systems of analytic functions

Series
Algebra Seminar
Time
Tuesday, January 25, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anton LeykinGeorgia Tech

Given a system of analytic functions and an approximate zero, we introduce inflation to transform this system into one with a regular quadratic zero. This leads to a method for isolating a cluster of zeros of the given system.

(This is joint work with Michael Burr.)

Pages