TBD
- Series
- Dissertation Defense
- Time
- Tuesday, March 24, 2020 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- HANGFAN LI – Georgia Institute of Technology – hli434@math.gatech.edu
TBD
TBD
This talk was cancelled due to the current status. The following is the original abstract for the talk. The celebrated Brill-Noether theorem says that the space of degree $d$ maps of a general genus $g$ curve to $\mathbb{P}^r$ is irreducible. However, for special curves, this need not be the case. Indeed, for general $k$-gonal curves (degree $k$ covers of $\mathbb{P}^1$), this space of maps can have many components, of different dimensions (Coppens-Martens, Pflueger, Jensen-Ranganathan). In this talk, I will introduce a natural refinement of Brill-Noether loci for curves with a distinguished map $C \rightarrow \mathbb{P}^1$, using the splitting type of push forwards of line bundles to $\mathbb{P}^1$. In particular, studying this refinement determines the dimensions of all irreducible components of Brill-Noether loci of general $k$-gonal curves.
Adaptive control problems arise in many engineering applications in which one needs to design feedback controllers that ensure tracking of desired reference trajectories while at the same time identify unknown parameters such as control gains. This talk will summarize the speaker's work on adaptive tracking and parameter identification, including an application to curve tracking problems in robotics. The talk will be understandable to those familiar with the basic theory of ordinary differential equations. No prerequisite background in systems and control will be needed to understand and appreciate this talk.
A math-themed variety show including music, improv comedy, a poetry slam, juggling, a fashion show (audience members can join in) and more, right there on the stage of the fabulous Highland Ballroom! Tickets are $10.00.
An afternoon of public engagement of mathematics through puzzles, games, and the arts, including: magic (by Matt Baker), juggling and other circus arts, music, dance, an art gallery, and a live construction of a Fibonacci-based sculpture (by Akio Hizume). It is free and open to the public, but our partner the Julia Robinson Mathematics Festival recommends registering at https://jrmf.org/event-details/mathapalooza . If you want to get involved, please contact Evans Harrell directly.
Cancelled due to COVID-19
The pure spherical p-spin model is a Gaussian random polynomial H of degree p on an N-dimensional sphere, with N large. The sphere is viewed as the state space of a physical system with many degrees of freedom, and the random function H is interpreted as a smooth assignment of energy to each state, i.e. as an energy landscape.
In 2012, Auffinger, Ben Arous and Cerny used the Kac-Rice formula to count the average number of critical points of H having a given index, and with energy below a given value. This number is exponentially large in N for p > 2, and the rate of growth itself is a function of the index chosen and of the energy cutoff. This function, called the complexity, reveals interesting topological information about the landscape H: it was shown that below an energy threshold marking the bottom of the landscape, all critical points are local minima or saddles with an index not diverging with N. It was shown that these finite-index saddles have an interesting nested structure, despite their number being exponentially dominated by minima up to the energy threshold. The total complexity (considering critical points of any index) was shown to be positive at energies close to the lowest. Thus, at least from the perspective of the average number of critical points, these random landscapes are very non-convex. The high-dimensional and rugged aspects of these landscapes make them relevant to the folding of large molecules and the performance of neural nets.
Subag made a remarkable contribution in 2017, when he used a second-moment approach to show that the total number of critical points concentrates around its mean. In light of the above, when considering critical points near the bottom of the landscape, we can view Subag's result as a statement about the concentration of the number of local minima. His result demonstrated that the typical behavior of the minima reflects their average behavior. We complete the picture for the bottom of the landscape by showing that the number of critical points of any finite index concentrates around its mean. This information is important to studying associated dynamics, for instance navigation between local minima. Joint work with Antonio Auffinger and Yi Gu at Northwestern.
The Neumann-Poincaré (NP) operator arises in boundary value problems, and plays an important role in material design, signal amplification, particle detection, etc. The spectrum of the NP operator on domains with corners was studied by Carleman before tools for rigorous discussion were created, and received a lot of attention in the past ten years. In this talk, I will present our discovery and verification of eigenvalues embedded in the continuous spectrum of this operator. The main ideas are decoupling of spaces by symmetry and construction of approximate eigenvalues. This is based on two works with Stephen Shipman and Karl-Mikael Perfekt.