Seminars and Colloquia by Series

A dynamic system problem in religious group growth and survival

Series
Dynamical Systems Working Seminar
Time
Wednesday, May 30, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tongzhou ChenGT Math
We model and analyze the dynamics of religious group membership and size. A groups is distinguished by its strictness, which determines how much time group members are expected to spend contributing to the group. Individuals differ in their rate of return for time spent outside of their religious group. We construct a utility function that individ- uals attempt to maximize, then find a Nash Equilibrium for religious group participation with a heterogeneous population. We then model dynamics of group size by including birth, death, and switching of individuals between groups. Group switching depends on the strictness preferences of individuals and their probability of encountering members of other groups.

Fillability of positive contact surgeries and Lagrangian disks

Series
Geometry Topology Seminar
Time
Wednesday, May 23, 2018 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Bulent TosunUniversity of Alabama

Please Note: This will be a 90 minute seminar

It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. In this talk, we will discuss some new results about positive contact surgeries and in particular completely characterize when contact r surgery is symplectically/Stein fillable when r is in (0,1]. This is joint work with James Conway and John Etnyre.

Scattering below the ground state for nonlinear Schrödinger equations

Series
PDE Seminar
Time
Thursday, May 3, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jason MurphyMissouri University of Science and Technology
The ground state solution to the nonlinear Schrödinger equation (NLS) is a global, non-scattering solution that often provides a threshold between scattering and blowup. In this talk, we will discuss new, simplified proofs of scattering below the ground state threshold (joint with B. Dodson) in both the radial and non-radial settings.

Oral Exam: Contact structures on hyperbolic 3-manifolds

Series
Geometry Topology Working Seminar
Time
Wednesday, May 2, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyunki MinGeorgia Tech
Understanding contact structures on hyperbolic 3-manifolds is one of the major open problems in the area of contact topology. As a first step, we try to classify tight contact structures on a specific hyperbolic 3-manifold. In this talk, we will review the previous classification results and classify tight contact structures on the Weeks manifold, which has the smallest hyperbolic volume. Finally, we will discuss how to generalize this method to classify tight contact structures on some other hyperbolic 3-manifolds.

Local Space and Time Scaling Exponents for Diffusion on a Compact Metric Space (Thesis Defense)

Series
Dissertation Defense
Time
Monday, April 30, 2018 - 15:05 for 2 hours
Location
Skiles 006
Speaker
John DeverGeorgia Tech
We provide a new definition of a local walk dimension beta that depends only on the metric. Moreover, we study the local Hausdorff dimension and prove that any variable Ahlfors regular measure of variable dimension Q is strongly equivalent to the local Hausdorff measure with Q the local Hausdorff dimension, generalizing the constant dimensional case. Additionally, we provide constructions of several variable dimensional spaces, including a new example of a variable dimensional Sierpinski carpet. We use the local exponent beta in time-scale renormalization of discrete time random walks, that are approximate at a given scale in the sense that the expected jump size is the order of the space scale. We consider the condition that the expected time to leave a ball scales like the radius of the ball to the power beta of the center. We then study the Gamma and Mosco convergence of the resulting continuous time approximate walks as the space scale goes to zero. We prove that a non-trivial Dirichlet form with Dirichlet boundary conditions on a ball exists as a Mosco limit of approximate forms. We also prove tightness of the associated continuous time processes.

The h-principle and totally convex immersions

Series
Geometry Topology Seminar
Time
Monday, April 30, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael HarrisonLehigh University
The h-principle is a powerful tool in differential topology which is used to study spaces of functionswith certain distinguished properties (immersions, submersions, k-mersions, embeddings, free maps, etc.). Iwill discuss some examples of the h-principle and give a neat proof of a special case of the Smale-HirschTheorem, using the "removal of singularities" h-principle technique due to Eliashberg and Gromov. Finally, I willdefine and discuss totally convex immersions and discuss some h-principle statements in this context.

Averaging and Perturbation from a Geometric Viewpoint

Series
Dynamical Systems Working Seminar
Time
Friday, April 27, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 271
Speaker
Bhanu KumarGTMath
This talk follows Chapter 4 of the well known text by Guckenheimer and Holmes. It is intended to present the theorems on averaging for systems with periodic perturbation, but slow evolution of the solution. Also, a discussion of Melnikov’s method for finding persistence of homoclinic orbits and periodic orbits will also be given. Time permitting, an application to the circular restricted three body problem may also be included.

Intersections of Finite Sets: Geometry and Topology

Series
Combinatorics Seminar
Time
Friday, April 27, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Florian FrickCornell University
Given a collection of finite sets, Kneser-type problems aim to partition this collection into parts with well-understood intersection pattern, such as in each part any two sets intersect. Since Lovász' solution of Kneser's conjecture, concerning intersections of all k-subsets of an n-set, topological methods have been a central tool in understanding intersection patterns of finite sets. We will develop a method that in addition to using topological machinery takes the topology of the collection of finite sets into account via a translation to a problem in Euclidean geometry. This leads to simple proofs of old and new results.

Quantum simulation in Rydberg media

Series
Math Physics Seminar
Time
Friday, April 27, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Brian KennedySchool of Physics, Georgia Tech
Electrons possess both spin and charge. In one dimension, quantum theory predicts that systems of interacting electrons may behave as though their charge and spin are transported at different speeds.We discuss examples of how such many-particle effects may be simulated using neutral atoms and radiation fields. Joint work with Xiao-Feng Shi

Growth of Sobolev norms for abstract linear Schrödinger Equations

Series
PDE Seminar
Time
Thursday, April 26, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 257
Speaker
Alberto MasperoSISSA
We prove an abstract theorem giving a $t^\epsilon$ bound for any $\epsilon> 0$ on the growth of the Sobolev norms in some abstract linear Schrödinger equations. The abstract theorem is applied to nonresonant Harmonic oscillators in R^d. The proof is obtained by conjugating the system to some normal form in which the perturbation is a smoothing operator. Finally, time permitting, we will show how to construct a perturbation of the harmonic oscillator which provokes growth of Sobolev norms.

Pages