Seminars and Colloquia by Series

Joint GT-UGA Seminar at GT: L-space surgeries and satellites by algebraic links

Series
Geometry Topology Seminar
Time
Monday, April 3, 2017 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sarah RasmussenUniversity of Cambridge
Exploring when a closed oriented 3-manifold has vanishing reduced Heegaard Floer homology---hence is a so-called L-space---lends insight into the deeper question of how Heegaard Floer homology can be used to enumerate and classify interesting geometric structures. Two years ago, J. Rasmussen and I developed a tool to classify the L-space Dehn surgery slopes for knots in 3-manifolds, and I later built on these methods to classify all graph manifold L-spaces. After briefly discussing these tools, I will describe my more recent computation of the region of rational L-space surgeries on any torus-link satellite of an L-space knot, with a result that precisely extends Hedden’s and Hom’s analogous result for cables. More generally, I will discuss the region of L-space surgeries on iterated torus-link satellites and algebraic link satellites, along with implications for conjectures involving co-oriented taut foliations and left-orderable fundamental groups.

Joint GT-UGA Seminar at GT: An integral lift of contact homology

Series
Geometry Topology Seminar
Time
Monday, April 3, 2017 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jo NelsonBarnard College, Columbia University
I will discuss joint work with Hutchings which gives a rigorousconstruction of cylindrical contact homology via geometric methods. Thistalk will highlight our use of non-equivariant constructions, automatictransversality, and obstruction bundle gluing. Together these yield anonequivariant homological contact invariant which is expected to beisomorphic to SH^+ under suitable assumptions. By making use of familyFloer theory we obtain an S^1-equivariant theory defined with coefficientsin Z, which when tensored with Q recovers the classical cylindrical contacthomology, now with the guarantee of well-definedness and invariance. Thisintegral lift of contact homology also contains interesting torsioninformation.

(1,1) L-space knots

Series
Geometry Topology Seminar
Time
Monday, April 3, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Josh GreeneBoston College
I will describe a diagrammatic classification of (1,1) knots in S^3 and lens spaces that admit non-trivial L-space surgeries. A corollary of the classification is that 1-bridge braids in these manifolds admit non-trivial L-space surgeries. This is joint work with Sam Lewallen and Faramarz Vafaee.

Analysis of an ice-structure interaction model with a dynamic nonlinearity and random resetting

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 3, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Michael MuskulusNTNU: Norwegian University of Science and Technology
This talk addresses an important problem in arctic engineering due to interesting dynamic phenomena in a forced linear system. The nonautonomous system considered is representative of a whole class of engineering problems that are not approachable by standard techniques from dynamical system theory.The background are ice-induced vibrations of structures (e.g. wind turbines or measurement masts) in regions with active sea ice. Ice is a complex material and the mechanism for ice-induced vibrations is not fully clear at present. In particular, the conditions under which the observed, qualitatively different vibration regimes are active cannot be predicted accurately so far. A recent mathematical model developed by Delft University of Technology assumes that a number of parallel ice strips are pushing with a constant velocity against a flexible structure. The structure is modelled as a single degree of freedom harmonic oscillator. The contact force acts on the structure, but at the same time slows down the advancement of the ice, thereby introducing a dynamic nonlinearity in the otherwise linear system. When the local contact force becomes large enough, the ice crushes and the corresponding strip is reset to a random offset in front of the structure.This is the first mathematical model that exhibits all three different dynamic regimes that are observed in reality: for slow ice velocities the structure undergoes quasi-static sawtooth responses where all ice strips fail at the same time (a kind of synchronization phenomenon), for large ice velocities the structure response appears random, and for intermediate ice velocities the system exhibits vibrations at the structure eigenfrequency, commonly called frequency lock-in behavior. The latter type of vibrations causes a lot of damage to the structure and poses a safety and economic risk, so its occurrence needs to be predicted accurately.As I will show in this talk, the descriptive terms for the three vibration regimes are slightly misleading, as the mechanisms behind the observed behaviors are somewhat different than intuition suggests. I will present first results in analyzing the system and offer some explanations of the observed behaviors, as well as some simple criteria for the switch between the different vibration regimes.

Variational aspects of Dynamics

Series
Dynamical Systems Working Seminar
Time
Friday, March 31, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Lei ZhangSchool of Mathematics, GT
In this talk, we will give an introduction to the variational approach to dynamical systems. Specifically, we will discuss twist maps and prove the classical results that area-preserving twist map has Birkhoff periodic orbits for each rational rotation number.

Test Sets for Nonnegativity of Reflection-Invariant Polynomials

Series
ACO Student Seminar
Time
Friday, March 31, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jose AcevedoSchool of Mathematics, Georgia Tech
Using some classical results of invariant theory of finite reflection groups, and Lagrange multipliers, we prove that low degree or sparse real homogeneous polynomials which are invariant under the action of a finite reflection group $G$ are nonnegative if they are nonnegative on the hyperplane arrangement $H$ associated to $G$. That makes $H$ a test set for the above kind of polynomials. We also prove that under stronger sparsity conditions, for the symmetric group and other reflection groups, the test set can be much smaller. One of the main questions is deciding if certain intersections of some simply constructed real $G$-invariant varieties are empty or not.

Algebraic aspects of network induced systems of nonlinear equations

Series
Algebra Seminar
Time
Friday, March 31, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tianran ChenAuburn University at Montgomery
Networks, or graphs, can represent a great variety of systems in the real world including neural networks, power grid, the Internet, and our social networks. Mathematical models for such systems naturally reflect the graph theoretical information of the underlying network. This talk explores some common themes in such models from the point of view of systems of nonlinear equations.

Number of monochromatic two stars and triangles

Series
Stochastics Seminar
Time
Thursday, March 30, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sumit MukherjeeColumbia University
We consider the problem of studying the limiting distribution of the number of monochromatic two stars and triangles for a growing sequence of graphs, where the vertices are colored uniformly at random. We show that the limit distribution of the number of monochromatic two stars is a sum of mutually independent components, each term of which is a polynomial of a single Poisson random variable of degree 1 or 2. Further, we show that any limit distribution for the number of monochromatic two stars has an expansion of this form. In the triangle case the problem is more challenging, as in this case the class of limit distributions can involve terms with products of Poisson random variables. In this case, we deduce a necessary and sufficient condition on the sequence of graphs such that the number of monochromatic triangles is asymptotically Poisson in distribution and in the first two moments. This work is joint with Bhaswar B. Bhattacharya at University of Pennsylvania.

Distributional Approximation and Concentration via Stein's method: a biased view.

Series
School of Mathematics Colloquium
Time
Thursday, March 30, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Larry GoldsteinUniversity of Southern California
Charles Stein brought the method that now bears his name to life in a 1972 Berkeley symposium paper that presented a new way to obtain information on the quality of the normal approximation, justified by the Central Limit Theorem asymptotic, by operating directly on random variables. At the heart of the method is the seemingly harmless characterization that a random variable $W$ has the standard normal ${\cal N}(0,1)$ distribution if and only if E[Wf(W)]=E[f'(W)] for all functions $f$ for which these expressions exist. From its inception, it was clear that Stein's approach had the power to provide non-asymptotic bounds, and to handle various dependency structures. In the near half century since the appearance of this work for the normal, the `characterizing equation' approach driving Stein's method has been applied to roughly thirty additional distributions using variations of the basic techniques, coupling and distributional transformations among them. Further offshoots are connections to Malliavin calculus and the concentration of measure phenomenon, and applications to random graphs and permutations, statistics, stochastic integrals, molecular biology and physics.

Pages