Seminars and Colloquia by Series

Extremal Matrices for Graphs without K_5 Minors

Series
Algebra Seminar
Time
Monday, November 30, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liam SolusUniversity of Kentucky
Given a graph G on p vertices we consider the cone of concentration matrices associated to G; that is, the cone of all (p x p) positive semidefinite matrices with zeros in entries corresponding to the nonedges of G. Due to its applications in PSD-completion problems and maximum-likelihood estimation, the geometry of this cone is of general interest. A natural pursuit in this geometric investigation is to characterize the possible ranks of the extremal rays of this cone. We will investigate this problem combinatorially using the cut polytope of G and its semidefinite relaxation, known as the elliptope of G. For the graphs without K_5 minors, we will see that the facet-normals of the cut polytope identify a distinguished set of extremal rays for which we can recover the ranks. In the case that these graphs are also series-parallel we will see that all extremal ranks are given in this fashion. Time permitting, we will investigate the potential for generalizing these results. This talk is based on joint work with Caroline Uhler and Ruriko Yoshida.

Modeling and Controllability issues for a general class of smart structures, a general outlook

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 30, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dr. Ahmet Özkan ÖzerUniversity of Nevada-Reno
In many applications, such as vibration of smart structures (piezoelectric, magnetorestrive, etc.), the physical quantity of interest depends both on the space an time. These systems are mostly modeled by partial differential equations (PDE), and the solutions of these systems evolve on infinite dimensional function spaces. For this reason, these systems are called infinite dimensional systems. Finding active controllers in order to influence the dynamics of these systems generate highly involved problems. The control theory for PDE governing the dynamics of smart structures is a mathematical description of such situations. Accurately modeling these structures play an important role to understanding not only the overall dynamics but the controllability and stabilizability issues. In the first part of the talk, the differences between the finite and infinite dimensional control theories are addressed. The major challenges tagged along in controlling coupled PDE are pointed out. The connection between the observability and controllability concepts for PDE are introduced by the duality argument (Hilbert's Uniqueness Method). Once this connection is established, the PDE models corresponding to the simple piezoelectric material structures are analyzed in the same context. Some modeling issues will be addressed. Major results are presented, and open problems are discussed. In the second part of the talk, a problem of actively constarined layer (ACL) structures is considered. Some of the major results are presesented. Open problems in this context are discussed. Some of this research presented in this talk are joint works with Prof. Scott Hansen (ISU) and Kirsten Morris (UW).

The Erdos-Hajnal Conjecture and structured non-linear graph-based hashing

Series
Graph Theory Seminar
Time
Monday, November 23, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Krzysztof ChoromanskiGoogle Research
The goal of this talk is to show recent advances regarding two important mathematical problems. The first one can be straightforwardly formulated in a graph theory language, but can be possibly applied in other fields. The second one was motivated by machine learning applications, but leads to graph theory techniques. The celebrated open conjecture of Erdos and Hajnal from 1989 states that families of graphs not having some given graph H as an induced subgraph contain polynomial-size cliques/stable sets (in the undirected setting) or transitive subsets (in the directed setting). Recent techniques developed over last few years provided the proof of the conjecture for new infinite classes of graphs (in particular the first infinite class of prime graphs). Furthermore, they gave tight asymptotics for the Erdos-Hajnal coefficients for many classes of prime tournaments as well as the proof of the conjecture for all but one tournament on at most six vertices and the proof of the weaker version of the conjecture for trees on at most six vertices. In this part of the talk I will summarize these recent achievements. Structured non-linear graph-based hashing is motivated by applications in neural networks, where matrices of linear projections are constrained to have a specific structured form. This drastically reduces the size of the model and speeds up computations. I will show how the properties of the underlying graph encoding correlations between entries of these matrices (such as its chromatic number) imply the quality of the entire non-linear hashing mechanism. Furthermore, I will explain how general structured matrices that very recently attracted researchers’ attention naturally lead to the underlying graph theory description.

Shock dynamics in particle laden flow

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 23, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Li WangUCLA->SUNY Buffalo
We study the shock dynamics for a gravity-driven thin film flow with a suspension of particles down an incline, which is described by a system of conservation laws equipped with an equilibrium theory for particle settling and resuspension. Singular shock appears in the high particle concentration case that relates to the particle-rich ridge observed in the experiments. We analyze the formation of the singular shock as well as its local structure, and extend to the finite volume case, which leads to a linear relationship between the shock front with time to the one-third power. We then add the surface tension effect into the model and show how it regularizes the singular shock via numerical simulations.

Entropy power inequality for Renyi entropy

Series
Other Talks
Time
Monday, November 23, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergey BobkovUniversity of Minnesota, Minneapolis
We will discuss an extension of the entropy power inequality in terms of the Renyi entropy to sums of independent random vectors (with densities). Joint work with G. Chistyakov.

Concentration of Stationary Measures

Series
CDSNS Colloquium
Time
Friday, November 20, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yingfei Yi University of Alberta & Georgia Tech
The talk concerns limit behaviors of stationary measures of diffusion processes generated from white-noise perturbed systems of ordinary differential equations. By relaxing the notion of Lyapunov functions associated with the stationary Fokker-Planck equations, new existence and non-existence results of stationary measures will be presented. As noises vanish, concentration and limit behaviors of stationary measures will be described with particular attentions paying to the special role played by multiplicative noises. Connections to problems such as stochastic stability, stochastic bifurcations, and thermodynamics limits will also be discussed.

Counting Single Cut-or-Join Scenarios

Series
Combinatorics Seminar
Time
Friday, November 20, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Heather SmithGeorgia Tech
Represent a genome with an edge-labelled, directed graph having maximum total degree two. We explore a number of questions regarding genome rearrangement, a common mode of molecular evolution. In the single cut-or-join model for genome rearrangement, a genome can mutate in one of two ways at any given time: a cut divides a degree two vertex into two degree one vertices while a join merges two degree one vertices into one degree two vertex. Fix a set of genomes, each having the same set of edge labels. The number of ways for one genome to mutate into another can be computed in polynomial time. The number of medians can also be computed in polynomial time. While single cut-or-join is, computationally, the simplest mathematical model for genome rearrangement, determining the number of most parsimonious median scenarios remains #P-complete. We will discuss these and other complexity results that arose from an abstraction of this problem. [This is joint work with Istvan Miklos.]

Pages