Basic unifying theory underlying techniques of regression, analysis of variance and covariance, from a geometric point of view. Modern computational capabilities are exploited fully. Students apply the theory to real data through canned and coded programs.
Basic theories of testing statistical hypotheses, including a thorough treatment of testing in exponential class families. A careful mathematical treatment of the primary techniques of hypothesis testing utilized by statisticians.
Fundamentals, connectivity, matchings, colorings, extremal problems, Ramsey theory, planar graphs, perfect graphs. Applications to operations research and the design of efficient algorithms.
Geometry, convergence, and structure of linear operators in infinite dimensional spaces. Applications to science and engineering, including integral equations and ordinary and partial differential equations.
The three course series MATH 6579, 6580, and 6221 is designed to provide a high level mathematical background for engineers and scientists.
This course is equivalent to MATH 6338. Students should not be able to obtain credit for both MATH 6580 and MATH 6338.
Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.
Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.