Classical Mathematical Methods in Engineering

Fourier series, Fourier integrals, boundary value problems for partial differential equations, eigenvalue problems

Dynamics and Bifurcations I

A broad introduction to the local and global behavior of nonlinear dynamical systems arising from maps and ordinary differential equations.

Differential Geometry

The theory of curves, surfaces, and more generally, manifolds. Curvature, parallel transport, covariant differentiation, Gauss-Bonet theorem

Introduction to Topology

Point set topology, topological spaces and metric spaces, continuity and compactness, homotopy and covering spaces

Partial Differential Equations I

Method of characteristics for first and second order partial differential equations, conservation laws and shocks, classification of second order systems and applications.

Complex Analysis

Topics from complex function theory, including contour integration and conformal mapping

Mathematical Statistics I

Sampling distributions, Normal, t, chi-square and F distributions. Moment generating function methods, Bayesian estimation and introduction to hypothesis testing

Stochastic Processes I

Simple random walk and the theory of discrete time Markov chains

Abstract Algebra I

This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures." There will be a very strong emphasis on theory and proofs.

Senior Project II

The second of a two course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.


Subscribe to RSS - fa22