Tuesday, September 8, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chongchun Zeng – School of Mathematics, Georgia Tech
Consider a general linear Hamiltonian system u_t = JLu in a Hilbert
space X, called the energy space. We assume that R(L) is closed, L induces a
bounded and symmetric bi-linear form on X, and the energy functional
has only finitely many negative dimensions n(L). There is no restriction on the
anti-selfadjoint operator J except \ker L \subset D(J), which can be unbounded
and with an infinite dimensional kernel space. Our first result is an index
theorem on the linear instability of the evolution group e^{tJL}. More
specifically, we obtain some relationship between n(L) and the dimensions of
generalized eigenspaces of eigenvalues of JL, some of which may be embedded in the
continuous spectrum. Our second result is the linear exponential trichotomy of the
evolution group e^{tJL}. In particular, we prove the nonexistence of exponential
growth in the finite co-dimensional center subspace and the optimal bounds on the
algebraic growth rate there. This is applied to construct the local invariant
manifolds for nonlinear Hamiltonian PDEs near the orbit of a coherent state
(standing wave, steady state, traveling waves etc.). For some cases (particularly
ground states), we can prove orbital stability and local uniqueness of center
manifolds. We will discuss applications to examples including dispersive long wave
models such as BBM and KDV equations, Gross-Pitaevskii equation for superfluids,
2D Euler equation for ideal fluids, and 3D Vlasov-Maxwell systems for
collisionless plasmas. This work will be discussed in two talks. In the first
talk, we will motivate the problem by several Hamiltonian PDEs, describe the main
results, and demonstrate how they are applied. In the second talk, some ideas of
the proof will be given.
Tuesday, September 8, 2015 - 17:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jiaqi Yang – Georgia Tech
(continuation of last week's seminar): We will discuss KAM results for symplectic and presymplectic maps. Firstly, we will study geometric properties of a symplectic dynamical system which will allow us to prove a KAM theorem in a-posteriori format. Then, a corresponding theorem for a parametric family of symplectic maps will be presented. Finally, using similar method, we will extend the theorems to presymplectic maps. These results appear in the work of Alishah, de la Llave, Gonzalez, Jorba and Villanueva.
Wednesday, September 9, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xiaolong He – Georgia Tech (Math)/Hunan University
We investigate the existence of quasi-periodic solutions for state-dependent delay
differential equationsusing the parameterization
method, which is different from the usual way-working on the solution
manifold. Under the assumption of finite-time differentiability of
functions and exponential dichotomy, the existence and smoothness of
quasi-periodic solutions are investigated by using contraction
arguments We also develop a KAM
theory to seek analytic quasi-periodic solutions. In contrast with the finite differentonable theory, this requires adjusting parameters. We prove that the set of parameters which guarantee the
existence of analytic quasi-periodic solutions is of positive measure.
All of these results are given in an a-posterior form. Namely, given a
approximate solution satisfying some non-degeneracy conditions, there is
a true solution nearby.
Thursday, September 10, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Hongkai Zhao – University of California, Irvine – zhao@math.uci.edu
Approximate separable representation of the Green’s functions for
differential operators is a fundamental question in the analysis of
differential equations and development of efficient numerical
algorithms. It can reveal intrinsic complexity, e.g., Kolmogorov n-width
or degrees of freedom of the corresponding differential
equation. Computationally, being able to approximate a Green’s function
as a sum with few separable terms is equivalent to the existence of low
rank approximation of the discretized system which can be explored for
matrix compression and fast solution techniques such as in fast multiple
method and direct matrix inverse solver. In this talk, we will mainly
focus on Helmholtz equation in the high frequency limit for which we
developed a new approach to study the approximate separability of
Green’s function based on an geometric characterization of the relation
between two Green's functions and a tight dimension estimate for the
best linear subspace approximating a set of almost orthogonal vectors.
We derive both lower bounds and upper bounds and show their sharpness
and implications for computation setups that are commonly used
in practice. We will also make comparisons with other types of
differential operators such as coercive elliptic differential operator
with rough coefficients in divergence form and hyperbolic differential
operator. This is a joint work with Bjorn Engquist.
Thursday, September 10, 2015 - 13:35 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chun-Hung Liu – Princeton University
A set F of graphs has the Erdos-Posa property if there exists a function
f such that every graph either contains k disjoint subgraphs each
isomorphic to a member in F or contains at most f(k) vertices
intersecting all such subgraphs. In this talk I will address the
Erdos-Posa property with respect to three closely related graph
containment relations: minor, topological minor, and immersion. We
denote the set of graphs containing H as a minor, topological minor and
immersion by M(H),T(H) and I(H), respectively.
Robertson and Seymour in 1980's proved that M(H) has the Erdos-Posa
property if and only if H is planar. And they left the question for
characterizing H in which T(H) has the Erdos-Posa property in the same
paper. This characterization is expected to be complicated as T(H) has
no Erdos-Posa property even for some tree H. In this talk, I will
present joint work with Postle and Wollan for providing such a
characterization. For immersions, it is more reasonable to consider an
edge-variant of the Erdos-Posa property: packing edge-disjoint subgraphs
and covering them by edges. I(H) has no this edge-variant of the
Erdos-Posa property even for some tree H. However, I will prove that
I(H) has the edge-variant of the Erdos-Posa property for every graph H
if the host graphs are restricted to be 4-edge-connected. The
4-edge-connectivity cannot be replaced by the 3-edge-connectivity.
Thursday, September 10, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xuan Wang – School of Mathematics, Georgia Tech
We consider the first-passage percolation model defined on the square lattice
Z^2 with nearest-neighbor edges. The model begins with i.i.d. nonnegative
random variables indexed by the edges. Those random variables can be viewed
as edge lengths or passage times. Denote by T_n the length (i.e. passage
time) of the shortest path from the origin to the boundary of the box
[-n,n] \times [-n,n]. We focus on the case when the distribution function of the
edge weights satisfies F(0) = 1/2. This is sometimes known as the "critical
case" because large clusters of zero-weight edges force T_n to grow at most
logarithmically. We characterize the limit behavior of T_n under conditions
on the distribution function F. The main tool involves a new relation between
first-passage percolation and invasion percolation. This is joint work with
Michael Damron and Wai-Kit Lam.
Friday, September 11, 2015 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chun-Hung Liu – Princeton University
A graph is a minor of another graph if the former can be obtained from a subgraph of the latter by contracting edges. We prove that for every graph H, if H is not a minor of a graph G, then V(G) can be 3-colored such that the subgraph induced by each color class has no component with size greater than a function of H and the maximum degree of G. This answers a question raised by Esperet and Joret, generalizes their result for 3-coloring V(G) for graphs G embeddable in a fixed surface, and improves a result of Alon, Ding, Oporowski and Vertigan for 4-coloringing V(G) for H-minor free graphs G. As a corollary, we prove that for every positive integer t, if G is a graph with no K_{t+1} minor, then V(G) can be 3t-colored such that the subgraph induced by each color class has no component with size larger than a function of t. This improves a result of Wood for coloring V(G) by 3.5t+2 colors. This work is joint with Sang-il Oum.
Friday, September 11, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Megan Bernstein – Georgia Tech
I will find upper and lower bounds for the mixing time as well as the likelihood order after sufficient time of the following involution walk on the symmetric group. Consider 2n cards on a table. Pair up all the cards. Ignore each pairing with probability $p \geq 1/2$. For any pair not being ignored, pick up the two cards and switch their spots. This walk is generated by involutions with binomially distributed two cycles. The upper bound of $\log_{2/(1+p)}(n)$ will result from spectral analysis using a combination of a series of monotonicity relations on the eigenvalues of the walk and the character polynomial for the representations of the symmetric group. A lower bound of $\log_{1/p}$ differs by a constant factor from the upper bound. This walk was introduced to study a conjecture about a random walk on the unitary group from the information theory of black holes.
Friday, September 11, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yannick Sire – John Hopkins University
I will describe several
recent results with N. Nadirashvili where we construct extremal metrics
for eigenvalues on riemannian surfaces. This involves the study of a
Schrodinger operator. As an application, one gets isoperimetric
inequalities on the 2-sphere
for the third eigenvalue of the Laplace Beltrami operator.