Seminars and Colloquia Schedule

Monday, October 29, 2018 - 13:55 , Location: Skiles 005 , Prof. Tobin Issac , Georgia Tech, School of Computational Science and Engineering , Organizer: Sung Ha Kang
We are often forced to make important decisions with imperfect and incomplete data.  In model-based inference, our efforts to extract useful information from data are aided by models of what occurs where we have no observations: examples range from climate prediction to patient-specific medicine.  In many cases, these models can take the form of systems of PDEs with critical-yet-unknown parameter fields, such as initial conditions or material coefficients of heterogeneous media.   A concrete example that I will present is to make predictions about the Antarctic ice sheet from satellite observations, when we model the ice sheet using a system of nonlinear Stokes equations with a Robin-type boundary condition, governed by a critical, spatially varying coefficient.  This talk will present three aspects of the computational stack used to efficiently estimate statistics for this kind of inference problem.   At the top is an posterior-distribution approximation for Bayesian inference, that combines Laplace's method with randomized calculations to compute an optimal low-rank representation.  Below that, the performance of this approach to inference is highly dependent on the efficient and scalable solution of the underlying model equation, and its first- and second- adjoint equations.  A high-level description of a problem (in this case, a nonlinear Stokes boundary value problem) may suggest an approach to designing an optimal solver, but this is just the jumping-off point: differences in geometry, boundary conditions, and otherconsiderations will significantly affect performance.  I will discuss how the peculiarities of the ice sheet dynamics problem lead to the development of an anisotropic multigrid method (available as a plugin to the PETSc library for scientific computing) that improves on standard approaches.At the bottom, to increase the accuracy per degree of freedom of discretized PDEs, I develop adaptive mesh refinement (AMR) techniques for large-scale problems.  I will present my algorithmic contributions to the p4est library for parallel AMR that enable it to scale to concurrencies of O(10^6), as well as recent work commoditizing AMR techniques in PETSc.
Monday, October 29, 2018 - 14:30 , Location: Boyd 328 , JungHwan Park , Georgia Tech , Organizer: Caitlin Leverson
Monday, October 29, 2018 - 16:00 , Location: Boyd 328 , Patrick Orson , Boston College , Organizer: Caitlin Leverson
Wednesday, October 31, 2018 - 12:20 , Location: Skiles 005 , Haomin Zhou , Georgia Tech , Organizer: Trevor Gunn
In this chalk plus slides talk, I will give a few examples from my own experience to illustrate how one can use stochastic differential equations in various applications, and its theoretical connection to diffusion theory and optimal transport theory. The presentation is designed for first or second year graduate students.
Wednesday, October 31, 2018 - 12:55 , Location: Skiles 006 , Joe Fu , UGA , , Organizer: Galyna Livshyts
Alesker has introduced the notion of a smooth valuation on a smooth manifold M. This is a special kind of set function, defined on sufficiently regular compact subsets A of M, extending the corresponding idea from classical convexity theory. Formally, a smooth valuation is a kind of curvature integral; informally, it is a sum of Euler characteristics of intersections of A with a collection of objects B. Smooth valuations admit a natural multiplication, again due to Alesker. I will aim to explain the rather abstruse formal definition of this multiplication, and its relation to the ridiculously simple informal counterpart given by intersections of the objects B. 
Wednesday, October 31, 2018 - 13:55 , Location: Skiles 005 , Joe Fu , UGA , , Organizer: Galyna Livshyts
The centerpiece of the subject of integral geometry, as conceived originally by Blaschke in the 1930s, is the principal kinematic formula (PKF). In rough terms, this expresses the average Euler characteristic of two objects A, B in general position in Euclidean space in terms of their individual curvature integrals. One of the interesting features of the PKF is that it makes sense even if A and B are not smooth enough to admit curvatures in the classical sense. I will describe the state of our understanding of the regularity needed to make it all work, and state some conjectures that would extend it.
Wednesday, October 31, 2018 - 16:30 , Location: Skiles 006 , Shijie Xie , Georgia Tech , Organizer: Xingxing Yu
A graph G is H-free if H is not isomorphic to an induced subgraph of G. Let Pt denote the path on t vertices, and let Kn denote the complete graph on n vertices. For a positive integer r, we use rG to denote the disjoint union of r copies of G. In this talk, we will discuss the result, by Gaspers and Huang, that (2P2, K4)-free graphs are 4-colorable, where the bound is attained by the five-wheel and the complement of seven-cycle. It answers an open question by Wagon in 1980s.
Thursday, November 1, 2018 - 12:00 , Location: Skiles 005 , Wojtek Samotij , Tel Aviv University , Organizer: Lutz Warnke
Let X denote the number of triangles in the random graph G(n, p). The problem of determining the asymptotics of the rate of the upper tail of X, that is, the function f_c(n,p) = log Pr(X > (1+c)E[X]), has attracted considerable attention of both the combinatorics and the probability communities. We shall present a proof of the fact that whenever log(n)/n << p << 1, then f_c(n,p) = (r(c)+o(1)) n^2 p^2 log(p) for an explicit function r(c). This is joint work with Matan Harel and Frank Mousset.
Friday, November 2, 2018 - 12:20 , Location: Skiles 005 , Thinh Doan , ISyE/ECE, Georgia Tech , , Organizer: He Guo
Abstract&nbsp;In this talk, I will present a popular distributed method, namely, distributed consensus-based gradient (DCG) method, for solving optimal learning problems over a network of agents. Such problems arise in many applications such as, finding optimal parameters over a large dataset distributed among a network of processors or seeking an optimal policy for coverage control problems in robotic networks. The focus is to present our recent results, where we study the performance of DCG when the agents are only allowed to exchange their quantized values due to their finite communication bandwidth. In particular, we develop a novel quantization method, which we refer to as adaptive quantization. The main idea of our approach is to quantize the nodes' estimates based on the progress of the algorithm, which helps to eliminate the quantized errors.&nbsp;Under the adaptive quantization, we then derive the bounds on the convergence rates of the proposed method as a function of the bandwidths and the underlying network topology, for both convex and strongly convex objective functions. Our results suggest&nbsp;that under the adaptive quantization, the rate of convergence of DCG&nbsp;with and without quantization are the same, except for a factor which captures the number of quantization bits. To the best of the authors’ knowledge, the results in this paper are considered better than any existing results for DCG under quantization. This is based on a joint work with Siva Theja Maguluri and Justin Romberg. Bio&nbsp;Thinh T. Doan is a TRIAD postdoctoral fellow at Georgia Institute of Technology, joint between&nbsp;the School of Industrial and Systems Engineering&nbsp;and&nbsp;the School of Electrical and Computer Engineering (ECE). He was born in Vietnam, where he got his Bachelor degree in Automatic Control at Hanoi University of Science and Technology in 2008. He obtained his Master and Ph.D. degrees both in ECE from the University of Oklahoma in 2013 and the University of Illinois at Urbana-Champaign&nbsp;in 2018, respectively. His research interests lie at the intersection of control theory, optimization, distributed algorithms, and applied probability, with the main applications in machine learning, reinforcement learning, power networks, and multi-agent systems.
Friday, November 2, 2018 - 15:00 , Location: Skiles 005 , Guoli Ding , Louisiana State University , Organizer: Lutz Warnke
The purpose of this talk is to explain the following result. Let n > 2 be an integer. Let H be a 3-connected minor of a 3-connected graph G. If G is sufficiently large (relative to n and the size of H) then G has a 3-connected minor obtained from H by “adding” K_{3,n} or W_n.
Friday, November 2, 2018 - 15:05 , Location: Skiles 156 , Yian Yao , GT Math , Organizer: Jiaqi Yang
The Shadowing lemma describes the behaviour of pseudo-orbits near a hyperbolic invariant set.&nbsp; In this talk, I will present an analytic proof of the shadowing lemma for discrete flows. This is a work by K. R. Meyer and George R. Sell.