Seminars and Colloquia Schedule

Invariant Manifolds in a Quasi-periodically Forced System with Noise

Series
CDSNS Colloquium
Time
Monday, August 26, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lei ZhangUniversity of Toronto

In this talk, we consider a quasi-periodically forced system arising from the problem of chemical reactions. For we demonstrate efficient algorithms to calculate the normally hyperbolic invariant manifolds and their stable/unstable manifolds using parameterization method. When a random noise is added, we use similar ideas to give a streamlined proof of the existence of the stochastic invariant manifolds.

Topology in complex dynamics

Series
Geometry Topology Seminar Pre-talk
Time
Monday, August 26, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jasmine PowellUniversity of Michigan

The field of complex dynamics melds a number of disciplines, including complex analysis, geometry and topology. I will focus on the influences from the latter, introducing some important concepts and questions in complex dynamics, with an emphasis on how the concepts tie into and can be enhanced by a topological viewpoint.

Dynamical Mapping Classes

Series
Geometry Topology Seminar
Time
Monday, August 26, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jasmine PowellUniversity of Michigan

In complex dynamics, the main objects of study are rational maps on the Riemann sphere. For some large subset of such maps, there is a way to associate to each map a marked torus. Moving around in the space of these maps, we can then track the associated tori and get induced mapping classes. In this talk, we will explore what sorts of mapping classes arise in this way and use this to say something about the topology of the original space of maps.

Large Eddy Simulation of Turbulent Sooting Flames: Subfilter Scale Modeling of Soot Sources and Species Transport

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 26, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Suo YangUniversity of Minnesota – Twin Cities

Soot particles are major pollutants emitted from propulsion and power generation systems. In turbulent combustion, soot evolution is heavily influenced by soot-turbulence-chemistry interaction. Specifically, soot is formed during combustion of fuel-rich mixtures and is rapidly oxidized before being transported by turbulence into fuel-lean mixtures. Furthermore, different soot evolution mechanisms are dominant over distinct regions of mixture fraction. For these reasons, a new subfilter Probability Density Function (PDF) model is proposed to account for this distribution of soot in mixture fraction space. At the same time, Direct Numerical Simulation (DNS) studies of turbulent nonpremixed jet flames have revealed that Polycyclic Aromatic Hydrocarbons (PAH), the gas-phase soot precursors, are confined to spatially intermittent regions of low scalar dissipation rates due to their slow formation chemistry. The length scales of these regions are on the order of the Kolmogorov scale (i.e., the smallest turbulence scale) or smaller, where molecular diffusion dominates over turbulent mixing irrespective of the large-scale turbulent Reynolds number. A strain-sensitivity parameter is developed to identify such species. A Strain-Sensitive Transport Approach (SSTA) is then developed to model the differential molecular transport in the nonpremixed “flamelet” equations. These two models are first validated a priori against a DNS database, and then implemented within a Large Eddy Simulation (LES) framework, applied to a series of turbulent nonpremixed sooting jet flames, and validated via comparisons with experimental measurements of soot volume fraction.

Solving Algebraic Equations

Series
Undergraduate Seminar
Time
Monday, August 26, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Josephine YuGeorgia Tech

We will discuss how to solve algebraic equations using symbolic, numerical, and combinatorial methods.

Prym–Brill–Noether loci of special curves

Series
Algebra Seminar
Time
Tuesday, August 27, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Steven Creech & Derek WuGeorgia Tech

Prym varieties are a class of abelian varieties that arise from double covers of tropical or algebraic curves. The talk will revolve around the Prym--Brill--Noether locus, a subvariety determined by divisors of a given rank. Using a connection to Young tableaux, we determine the dimensions of these loci for certain tropical curves, with applications to algebraic geometry. Furthermore, these loci are always pure dimensional and path connected. Finally, we compute the first homologies of the Prym--Brill--Noether loci under certain conditions.

Highly-oscillatory evolution equations with time-varying vanishing frequency: asymptotics and numerics

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, August 28, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammed LemouUniversité de Rennes 1 et ENS de Rennes

special time

In asymptotic analysis and numerical approximation of highly-oscillatory evolution problems, it is commonly supposed that the oscillation frequency is either constant or, at least, bounded from below by a strictly positive constant uniformly in time. Allowing for the possibility that the frequency actually depends on time and vanishes at some instants introduces additional difficulties from both the asymptotic analysis and numerical simulation points of view. I will present a first step towards the resolution of these difficulties. In particular, we show that it is still possible in this situation to infer the asymptotic behavior of the solution at the price of more intricate computations and we derive a second order uniformly accurate numerical method.

Averages over Discrete Spheres

Series
Analysis Seminar
Time
Wednesday, August 28, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGeorgia Tech

Fine properties of spherical averages in the continuous setting include
$L^p$  improving estimates
and sparse bounds, interesting in the settings of a fixed radius, lacunary sets of radii, and the
full set of radii. There is a parallel theory in the setting of discrete spherical averages, as studied
by Elias Stein, Akos Magyar, and Stephen Wainger. We recall the continuous case, outline the
discrete case, and illustrate a unifying proof technique. Joint work with Robert Kesler, and
Dario Mena Arias.

Anti-concentration of random sums with dependent terms, and singularity of sparse Bernoulli matrices

Series
High Dimensional Seminar
Time
Wednesday, August 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Konstantin TikhomirovGeorgiaTech

We will consider the problem of estimating the singularity probability of sparse Bernoulli matrices, and a related question of anti-concentration of weighted sums of dependent Bernoulli(p) variables.

Based on joint work with Alexander Litvak.

Averaging for Vlasov and Vlasov-Poisson equations

Series
Applied and Computational Mathematics Seminar
Time
Thursday, August 29, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Philippe ChartierInria-Rennes/IRMAR/ENS Rennes

special time

Our ambition is to derive asymptotic equations of the Vlasov-Poisson system in the strong magntic field regime. This work is thus an attempt to (re-)derive rigorously gyrokinetic equations and to design uniformly accurate methods for solving fast-oscillating kinetic equations, i.e. methods whose cost and accuracy do not depend the stiffness parameter. The main tools used to reach this objective are averaging and PDE techniques. In this talk, I will focus primarily on the first.

Universality for the time constant in critical first-passage percolation

Series
Stochastics Seminar
Time
Thursday, August 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronGeorgia Tech

In first-passage percolation, we place i.i.d. nonnegative weights (t_e) on the edges of a graph and consider the induced weighted graph metric T(x,y). When the underlying graph is the two-dimensional square lattice, there is a phase transition in the model depending on the probability p that an edge weight equals zero: for p<1/2, the metric T(0,x) grows linearly in x, whereas for p>1/2, it remains stochastically bounded. The critical case occurs for p=1/2, where there are large but finite clusters of zero-weight edges. In this talk, I will review work with Wai-Kit Lam and Xuan Wang in which we determine the rate of growth for T(0,x) up to a constant factor for all critical distributions. Then I will explain recent work with Jack Hanson and Wai-Kit Lam in which we determine the "time constant" (leading order constant in the rate of growth) in the special case where the graph is the triangular lattice, and the weights are placed on the vertices. This is the only class of distributions known where this time constant is computable: we find that it is an explicit function of the infimum of the support of t_e intersected with (0,\infty).

Stability and instability issues for kinetic gravitational systems

Series
Applied and Computational Mathematics Seminar
Time
Friday, August 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammed LemouUniversité de Rennes 1 et ENS de Rennes

Special time

I will start by giving a short overview of the history around stability and instability issues in gravitational systems driven by kinetic equations. Conservations properties and  families of non-homogeneous steady states will be first presented. A well-know conjecture in both astrophysics and mathematics communities was that  "all steady states of the gravitational Vlasov-Poisson system which are decreasing functions of the energy, are non linearly stable up to space translations".  We explain why the traditional variational approaches are not sufficient to answer this conjecture. An alternative approach, inspired by astrophysics literature, will be then presented and quantitative stability inequalities will be shown, therefore solving the above conjecture for Vlasov-Poisson systems. This have been achieved by using a refined notion for the rearrangement of functions and Poincaré-like  functional inequalities. For other systems like the so-called Hamiltonian Mean Field (HMF), the decreasing property of the steady states is no more sufficient to guarantee their stability. An additional explicit criteria is needed, under which their non-linear stability is proved. This criteria is sharp as  non linear instabilities can be constructed if it is not satisfied.

Learning and Testing for Graphical Models

Series
ACO Student Seminar
Time
Friday, August 30, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Zongchen ChenCS, Georgia Tech

In this talk we introduce some machine learning problems in the setting of undirected graphical models, also known as spin systems. We take proper colorings as a representative example of a hard-constraint graphical model. The classic problem of sampling a proper coloring uniformly at random of a given graph has been well-studied. Here we consider two inverse problems: Given random colorings of an unknown graph G, can we recover the underlying graph G exactly? If we are also given a candidate graph H, can we tell if G=H? The former problem is known as structure learning in the machine learning field and the latter is called identity testing. We show the complexity of these problems in different range of parameters and compare these results with the corresponding decision and sampling problems. Finally, we give some results of the analogous problems for the Ising model, a typical soft-constraint model. Based on joint work with Ivona Bezakova, Antonio Blanca, Daniel Stefankovic and Eric Vigoda.