Seminars and Colloquia by Series

Mathematical Ideas for Graph Generation

Series
Other Talks
Time
Thursday, March 3, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Bluejeans https://bluejeans.com/562725550/0392
Speaker
Gilad LermanSchool of Math, University of Minnesota

Generative networks have made it possible to generate meaningful signals such as images and texts. They were also extended to graphs and applied, for example, to generate molecules. However, the mathematical properties of generative methods are unclear, and training good generative models is difficult. Moreover, some basic and intuitive ideas of generative networks for signals and images do not apply to graphs and we thus focus on this talk on graph generation. An earlier joint work of the speaker generalized Mallat's scattering transform to graphs and later used it as an encoder within an autoencoder for graph generation (while applying a simple Gaussianization procedure to the output of the encoder) . For the graph scattering component, this work proved asymptotic invariance to permutations and stability to graph manipulations. The issue is that the decoder of this graph generation component used two fully connected networks and was not adapted to the graph structure. In fact, many other graph generation methods do not sufficiently utilize the graph structure. In order to address this issue, I will present a new recent joint work that develops a novel and trainable graph unpooling layer for effective graph generation. Given a graph with features, the unpooling layer enlarges this graph and learns its desired new structure and features. Since this unpooling layer is trainable, it can be applied to graph generation either in the decoder of a variational autoencoder or in the generator of a generative adversarial network (GAN). We establish connectivity and expressivity. That is, we prove that the unpooled graph remains connected and any connected graph can be sequentially unpooled from a 3-nodes graph. We apply the unpooling layer within the GAN generator and address the specific task of molecular generation. This is a joint work with Yinglong Guo and Dongmian Zou.

Modeling subcellular dynamics of T6SS and its impact on interbacterial competition

Series
Mathematical Biology Seminar
Time
Wednesday, March 2, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Yuexia Luna LinÉcole Polytechnique Fédérale de Lausanne

Please Note: Meeting Link: https://bluejeans.com/426529046/8775

The type VI secretion system (T6SS) is a bacterial subcellular structure that has been likened to a molecular syringe, capable of directly injecting toxins into neighboring cells. Bacteria use T6SS to kill competitor cells, gaining limited space and resources, such as a niche in a host. T6SS has been found in about 25% of Gram negative bacteria, including some human pathogens. Thus, understanding regulation, control, and function of T6SS, as well as the role of T6SS in interbacterial competition, has far-reaching ramifications. However, there are many open questions in this active research area, especially since bacteria have evolved diverse ways in producing and engaging this lethal weapon.

In a multidisciplinary collaboration, we combine experiments and applied mathematics to address a central question about T6SS’s role in interbacterial competition: what is the connection between the subcellular dynamics of T6SS and the competitive strength of the population as a whole? Based on detailed microscopy data, we develop a model on the scale of individual T6SS structures, which is then integrated with an agent-based model (ABM) to enable multi-scale simulations. In this talk, we present the experimental data, the subcellular T6SS model, and findings about T6SS-dependent competitions obtained by simulating the ABM.

Recording link: https://bluejeans.com/s/6fzcqvzTQ5m

Evasiveness conjecture and topological methods in graph theory II

Series
Graph Theory Working Seminar
Time
Tuesday, March 1, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jing YuGeorgia Institute of Technology

In the second talk of this seminar series, we continue to follow the manuscript of Carl Miller and building up concepts from algebraic topology. In particular, we will introduce chain complexes to define homology groups and provide some of the standard theory for them. 

Neural Networks with Inputs Based on Domain of Dependence and A Converging Sequence for Solving Conservation Laws

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 28, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/457724603/4379
Speaker
Haoxiang HuangGT

Recent research on solving partial differential equations with deep neural networks (DNNs) has demonstrated that spatiotemporal-function approximators defined by auto-differentiation are effective    for approximating nonlinear problems. However, it remains a challenge to resolve discontinuities in nonlinear conservation laws using forward methods with DNNs without beginning with part of the solution. In this study, we incorporate first-order numerical schemes into DNNs to set up the loss function approximator instead of auto-differentiation from traditional deep learning framework such as the TensorFlow package, thereby improving the effectiveness of capturing discontinuities in Riemann problems. We introduce a novel neural network method.  A local low-cost solution is first used as the input of a neural network to predict the high-fidelity solution at a space-time location. The challenge lies in the fact that there is no way to distinguish a smeared discontinuity from a steep smooth solution in the input, thus resulting in “multiple predictions” of the neural network. To overcome the difficulty, two solutions of the conservation laws from a converging sequence, computed from low-cost numerical schemes, and in a local domain of dependence of the space-time location, serve as the input. Despite smeared input solutions, the output provides sharp approximations to solutions containing shocks and contact surfaces, and the method is efficient to use, once trained. It works not only for discontinuities, but also for smooth areas of the solution, implying broader applications for other differential equations.

Finite-order mapping classes of del Pezzo surfaces

Series
Geometry Topology Seminar
Time
Monday, February 28, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Seraphina LeeUniversity of Chicago

Let $M$ be the underlying smooth $4$-manifold of a degree $d$ del Pezzo surface. In this talk, we will discuss two related results about finite subgroups of the mapping class group $\text{Mod}(M) := \pi_0(\text{Homeo}^+(M))$. A motivating question for both results is the Nielsen realization problem for $M$: which finite subgroups $G$ of $\text{Mod}(M)$ have lifts to $\text{Diff}^+(M) \leq \text{Homeo}^+(M)$ under the quotient map $\pi: \text{Homeo}^+(M) \to \text{Mod}(M)$? For del Pezzo surfaces $M$ of degree $d \geq 7$, we will give a complete classification of such finite subgroups. Furthermore, we will give a classification of, and a structure theorem for, all involutions in $\text{Mod}(M)$ for all del Pezzo surfaces $M$. This yields a positive solution to the Nielsen realization problem for involutions on $M$ and a connection to Bertini's classification of birational involutions of $\mathbb{CP}^2$ (up to conjugation by birational automorphisms of $\mathbb{CP}^2$).

Simultaneous Linearization of Diffeomorphisms of Isotropic Manifolds

Series
CDSNS Colloquium
Time
Friday, February 25, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
Online via Zoom
Speaker
Jonathan DeWittU Chicago

Please Note: Link: https://us06web.zoom.us/j/83392531099?pwd=UHh2MDFMcGErbzFtMHBZTmNZQXM0dz09

Suppose that $M$ is a closed isotropic Riemannian manifold and that $R_1,...,R_m$ generate the isometry group of $M$. Let $f_1,...,f_m$ be smooth perturbations of these isometries. We show that the $f_i$ are simultaneously conjugate to isometries if and only if their associated uniform Bernoulli random walk has all Lyapunov exponents zero. This extends a linearization result of Dolgopyat and Krikorian from $S^n$ to real, complex, and quaternionic projective spaces.

Tropical and algebraic divisors and projective embeddings

Series
Algebra Student Seminar
Time
Friday, February 25, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Trevor GunnGeorgia Tech

We will review how divisors on abstract algebraic curves are connected with projective embeddings and then see how that language translates to tropical curves and tropicalization. This talk aims to explain some of the connections between tropical curves and algebraic curves that was not discussed during the seminar on tropical Brill-Noether theory.

Microsoft Teams Link

Algebra Student Seminar homepage

An exotic contractible 4 manifold

Series
Geometry Topology Student Seminar
Time
Wednesday, February 23, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sierra KnavelGeorgia Tech

We will discuss Akbulut's construction of two smooth, contractible four-manifolds whose boundaries are diffeomorphic and extend to a homeomorphism but not to a diffeomorphism of the manifolds. 

Mechanisms Underlying Spatiotemporal Patterning in Microbial Collectives: A Model’s Perspective

Series
Mathematical Biology Seminar
Time
Wednesday, February 23, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Bhargav KaramchedFlorida State University

Please Note: Meeting Link: https://bluejeans.com/426529046/8775

We describe a spatial Moran model that captures mechanical interactions and directional growth in spatially extended populations. The model is analytically tractable and completely solvable under a mean-field approximation and can elucidate the mechanisms that drive the formation of population-level patterns. As an example, we model a population of E. coli growing in a rectangular microfluidic trap. We show that spatial patterns can arise because of a tug-of-war between boundary effects and growth rate modulations due to cell-cell interactions: Cells align parallel to the long side of the trap when boundary effects dominate. However, when cell-cell interactions exceed a critical value, cells align orthogonally to the trap’s long side. This modeling approach and analysis can be extended to directionally growing cells in a variety of domains to provide insight into how local and global interactions shape collective behavior. As an example, we discuss how our model reveals how changes to a cell-shape describing parameter may manifest at the population level of the microbial collective. Specifically, we discuss mechanisms revealed by our model on how we may be able to control spatiotemporal patterning by modifying cell shape of a given strain in a multi-strain microbial consortium.

Recording Link: https://bluejeans.com/s/0g6lBzbf0XT

New and improved bounds on the burning number of a graph

Series
Graph Theory Seminar
Time
Tuesday, February 22, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Zoom
Speaker
Anthony BonatoRyerson University

Graph burning is a simplified model for the spread of influence in a network. Associated with the process is the burning number, which quantifies the speed at which the influence spreads to every vertex. The Burning Number Conjecture claims that for every connected graph $G$ of order $n,$ its burning number satisfies $b(G) \le \lceil \sqrt{n} \rceil$. While the conjecture remains open, we prove the best-known bound on the burning number of a connected graph $G$ of order $n,$ given by $b(G) \le \sqrt{4n/3} + 1$, improving on the previously known $\sqrt{3n/2}+O(1)$ bound.

Pages