Seminars and Colloquia by Series

Upsilon invariant for graphs and homology cobordism group of homology cylinders

Series
Geometry Topology Seminar
Time
Monday, April 11, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
skies 006
Speaker
Akram AlishahiUGA

Upsilon is an invariant of knots defined using knot Floer homology by Ozsváth, Szabó and Stipsicz. In this talk, we discuss a generalization of their invariant for embedded graphs in rational homology spheres satisfying specific properties. Our construction will use a generalization of Heegaard Floer homology for “generalized tangles” called tangle Floer homology. As a result, we get a family of homomorphisms from the homology cobordism group of homology cylinders (over a surface of genus 0), which is an enlargement of the mapping class group defined by Graoufaldis and Levine. 

Learning Operators with Coupled Attention

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 11, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
https://gatech.zoom.us/j/96551543941
Speaker
Paris PerdikarisUniversity of Pennsylvania

Supervised operator learning is an emerging machine learning paradigm with applications to modeling the evolution of spatio-temporal dynamical systems and approximating general black-box relationships between functional data. We propose a novel operator learning method, LOCA (Learning Operators with Coupled Attention), motivated from the recent success of the attention mechanism. In our architecture, the input functions are mapped to a finite set of features which are then averaged with attention weights that depend on the output query locations. By coupling these attention weights together with an integral transform, LOCA is able to explicitly learn correlations in the target output functions, enabling us to approximate nonlinear operators even when the number of output function measurementsin the training set is very small. Our formulation is accompanied by rigorous approximation theoretic guarantees on the universal expressiveness of the proposed model. Empirically, we evaluate the performance of LOCA on several operator learning scenarios involving systems governed by ordinary and partial differential equations, as well as a black-box climate prediction problem. Through these scenarios we demonstrate state of the art accuracy, robustness with respect to noisy input data, and a consistently small spread of errors over testing data sets, even for out-of-distribution prediction tasks.
 

Incest and infanticide: a branching process with deletions and mergers that matches the threshold for hypercube percolation

Series
Combinatorics Seminar
Time
Friday, April 8, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Fiona SkermanUppsala University / Simon's Institute

We define a graph process based on a discrete branching process with deletions and mergers, which is inspired by the 4-cycle structure of the hypercube $\mathcal{Q}_d$ for large $d$. We prove survival and extinction under certain conditions on $p$ and $q$ that heuristically match the known expansions of the critical probabilities for bond percolation on the hypercube. Joint work with Laura Eslava and Sarah Penington. Based on https://arxiv.org/abs/2104.04407.

Parallel server systems under an extended Heavy traffic condition

Series
ACO Student Seminar
Time
Friday, April 8, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Eyal CastielIsrael Institute of Technology

Please Note: Link: https://bluejeans.com/520769740/3630

Parallel server systems have received a lot of attention since their introduction about 20 years ago. They are commonly used to model a situation where different type of jobs can be treated by servers with different specialties like data and call centers. Exact optimal policies are often not tractable for those systems. Instead, part of the literature was focused on finding policies that are asymptotically optimal as the load of the network approaches a value critical for stability (heavy traffic approximations). This is done by obtaining a weak convergence to a brownian control problem that is linked to a non-linear differential equation (Hamilton-Jacobi-Bellman). Asymptotically optimal policies have been analyzed for a long time under a restrictive assumption that is not natural for practical applications. This talk will present recent developments that allow for a more general asymptotic optimality result by focusing on the simplest non-trivial example.

Optimal Motion Planning and Computational Optimal Transport

Series
Dissertation Defense
Time
Friday, April 8, 2022 - 13:00 for
Location
Skiles 006
Speaker
Haodong SunGeorgia Institute of Technology

In this talk, we focus on designing computational methods supported by theoretical properties for optimal motion planning and optimal transport (OT). 

Over the past decades, motion planning has attracted large amount of attention in robotics applications. Given certain
configurations in the environment, the objective is to find trajectories which move the robot from one position to the other while satisfying given constraints. We introduce a new method to produce smooth and collision-free trajectories for motion planning task. The proposed model leads to short and smooth trajectories with advantages in numerical computation. We design an efficient algorithm which can be generalized to robotics applications with multiple robots.

The idea of optimal transport naturally arises from many application scenarios and provides powerful tools for comparing probability measures in various types. However, obtaining the optimal plan is generally a computationally-expensive task, sometimes even intractable. We start with the entropy transport problem as a relaxed version of original optimal transport problem with soft marginals, and propose an efficient algorithm to obtain the sample approximation for the optimal plan. We also study an inverse problem of OT and present the computational methods for learning the cost function from the given optimal transport plan. 
 

Stiffness and rigidity in random dynamics

Series
CDSNS Colloquium
Time
Friday, April 8, 2022 - 13:00 for 1 hour (actually 50 minutes)
Location
Online via Zoom
Speaker
Aaron BrownNorthwestern University

Please Note: Link: https://us06web.zoom.us/j/2782194473?pwd=L1Nnc0c1SXFFYkZqSkVGUGpEd2E4dz09

Consider two volume-preserving, smooth diffeomorphisms f and g of a compact manifold M.  Define the random walk on M by selecting either f or g (i.i.d.) at each iterate.  A number of questions arise in this setting:

  1. What are the closed subsets of M invariant under both f and g?
  2. What are the stationary measures on M for the random walk.  In particular, are the stationary measures invariant under f and g?

Conjecturally, for a generic pair of f and g we should be able to answer the above.  I will describe one sufficient criteria on f and g underwhich we can give some partial answers to the above questions.  Such a criteria is expected to be generic amoung pairs of (volume-preserving) diffeomorphisms and should be able to be verified in a number of naturally occurring geometric settings where the above questions are not fully answered.  

Ranks of points via Macaulay 2

Series
Algebra Student Seminar
Time
Friday, April 8, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 or ONLINE
Speaker
Jaewoo JungGeorgia Tech

The rank of a point $p$ with respect to a non-degenerate variety is the smallest number of the points in the variety that spans the point $p$. Studies about the ranks of points are interesting and important in various areas of applied mathematics and engineering in the sense that they are the shortest sizes of the decompositions of vectors into combinations of simple vectors.



In this talk, we focus on the ranks of points with respect to the rational normal curves, i.e. Waring ranks of binary forms. We introduce an algorithm that produces random points of given rank r. (Note that if we choose points randomly, we expect the rank of the points is just the generic rank.) Moreover, we check some known facts by Macaulay 2 computations. Lastly, we discuss the maximal and minimal rank of points in linear spaces.

 

Teams link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1649360107625?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Capillary Gravity Water Waves Linearized at Monotone Shear Flows: Eigenvalues and Inviscid Damping

Series
Dissertation Defense
Time
Friday, April 8, 2022 - 09:30 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Xiao LiuGeorgia Institute of Technology

Please Note: https://bluejeans.com/421317143/2787

We consider the 2-dim capillary gravity water wave problem -- the free boundary problem of the Euler equation with gravity and surface tension -- of finite depth x2 \in (-h,0) linearized at a uniformly monotonic shear flow U(x2). Our main results consist of two aspects, eigenvalue distribution and inviscid damping. We first prove that in contrast to finite channel flow and gravity wave, the linearized capillary gravity wave has two unbounded branches of eigenvalues for high wave numbers. Under certain conditions, we provide a complete picture of the eigenvalue distribution. Assuming there are no singular modes, we obtain the linear inviscid damping. We also identify the leading asymptotic terms of velocity and obtain the stronger decay for the remainders.

Stratified polyhedral homotopy: Picking up witness sets on our way to isolated solutions!

Series
Algebra Seminar
Time
Tuesday, April 5, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tianran ChenAuburn University at Montgomery

Numerical algebraic geometry revolves around the study of solutions to polynomial systems via numerical method. Two of the fundamental tools in this field are the polyhedral homotopy of Huber and Sturmfels for computing isolated solutions and the concept of witness sets put forth by Sommese and Wampler as numerical representations for non-isolated solution components. In this talk, we will describe a stratified polyhedral homotopy method that will bridge the gap between these two largely independent area. Such a homotopy method will discover numerical representations of non-isolated solution components as by-products from the process of computing isolated solutions. We will also outline the pipeline of numerical algorithms necessary to implement this homotopy method on modern massively parallel computing architecture.

Connected sum formula of embedded contact homology

Series
Geometry Topology Seminar
Time
Monday, April 4, 2022 - 14:00 for
Location
Skiles 006
Speaker
Luya WangUniversity of California, Berkeley

The contact connected sum is a well-understood operation for contact manifolds. I will discuss work in progress on how pseudo-holomorphic curves behave in the symplectization of the 3-dimensional contact connected sum, and as a result the connected sum formula of embedded contact homology. 
 

Pages