Seminars and Colloquia by Series

Graph powering and spectral robustness

Series
Combinatorics Seminar
Time
Friday, October 12, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter RalliPrinceton University
Spectral algorithms, such as principal component analysis and spectral clustering, typically require careful data transformations to be effective: upon observing a matrix A, one may look at the spectrum of ψ(A) for a properly chosen ψ. We propose a simple and generic construction for sparse graphs based on graph powering. It is shown that graph powering regularizes the graph and decontaminates its spectrum in the following sense: (i) If the graph is drawn from the sparse Erd˝os-R´enyi ensemble, which has no spectral gap, it is shown that graph powering produces a “maximal” spectral gap, with the latter justified by establishing an Alon-Boppana result for powered graphs; (ii) If the graph is drawn from the sparse SBM, graph powering is shown to achieve the fundamental limit for weak recovery. (Joint work with E. Abbe, E. Boix, C. Sandon.)

Holonomic Approximation Theorem I

Series
Geometry Topology Working Seminar
Time
Friday, October 12, 2018 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech
One of the general methods of proving h-principle is holonomic aprroximation. In this series of talks, I will give a proof of holonomic approximation theorem, and talk about some of its applications.

Learning Combinatorial Structures

Series
ACO Student Seminar
Time
Friday, October 12, 2018 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Swati GuptaISyE, Georgia Tech
At the heart of most algorithms today there is an optimization engine trying to learn online and provide the best decision, for e.g. rankings of objects, at any time with the partial information observed thus far in time. Often it becomes difficult to find near optimal solutions to many problems due to their inherent combinatorial structure that leads to certain computational bottlenecks. Submodularity is a discrete analogue of convexity and is a key property often exploited in tackling combinatorial optimization problems. In the first part of the talk, we will focus on computational bottlenecks that involve submodular functions: (a) convex function minimization over submodular base polytopes (for e.g. permutahedron) and (b) movement along a line inside submodular base polytopes. We give a conceptually simple and strongly polynomial algorithm Inc-Fix for the former, which is useful in computing Bregman projections in first-order projection-based methods like online mirror descent. For the latter, we will bound the iterations of the discrete Newton method which gives a running time improvement of at least n^6 over the state of the art. This is joint work with Michel Goemans and Patrick Jaillet. In the second part of the talk, we will consider the dual problem of (a), i.e. minimization of composite convex and submodular objectives. We will resolve Bach's conjecture from 2015 about the running time of a popular Kelley's cutting plane variant to minimize these composite objectives. This is joint work with Madeleine Udell and Song Zhou.

Majority vote model on the 3-regular tree

Series
Stochastics Seminar
Time
Thursday, October 11, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronGeorgia Institute of Technology
In the continuous-time majority vote model, each vertex of a graph is initially assigned an ``opinion,'' either 0 or 1. At exponential times, vertices update their values by assuming the majority value of their neighbors. This model has been studied extensively on Z^d, where it is known as the zero-temperature limit of Ising Glauber dynamics. I will review some of the major questions and conjectures on lattices, and then explain some new work with Arnab Sen (Minnesota) on the 3-regular tree. We relate the majority vote model to a new model, which we call the median process, and use this process to answer questions about the limiting state of opinions. For example, we show that when the initial state is given by a Bernoulli(p) product measure, the probability that a vertex's limiting opinion is 1 is a continuous function of p.

Hyperbolic conservation laws arising in the study of the forward-forward Mean-Field Games

Series
PDE Seminar
Time
Thursday, October 11, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Marc SedjroAfrican Institute for Mathematical Sciences, Tanzania
In this talk, we introduce several models of the so-called forward-forward Mean-Field Games (MFGs). The forward-forward models arise in the study of numerical schemes to approximate stationary MFGs. We establish a link between these models and a class of hyperbolic conservation laws. Furthermore, we investigate the existence of solutions and examine long-time limit properties. Joint work with Diogo Gomes and Levon Nurbekyan.

Symmetric functions and representations of the symmetric group

Series
Student Algebraic Geometry Seminar
Time
Thursday, October 11, 2018 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech
I will discuss some elementary theory of symmetric functions and give a brief introduction to representation theory with a focus on the symmetric groups. This talk relates to the discussion of Schubert calculus in the intersection theory reading course but can be understood independent of attending the reading course.

Limitations of Sums of Squares Method for Turan Problems

Series
Graph Theory Seminar
Time
Thursday, October 11, 2018 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Greg BlekhermanGeorgia Tech
A sum of squares of real numbers is always nonnegative. This elementary observation is quite powerful, and can be used to prove graph density inequalities in extremal combinatorics, which address so-called Turan problems. This is the essence of semidefinite method of Lov\'{a}sz and Szegedy, and also Cauchy-Schwartz calculus of Razborov. Here multiplication and addition take place in the gluing algebra of partially labelled graphs. This method has been successfully used on many occasions and has also been extensively studied theoretically. There are two competing viewpoints on the power of the sums of squares method. Netzer and Thom refined a Positivstellensatz of Lovasz and Szegedy by showing that if f> 0 is a valid graph density inequality, then for any a>0 the inequality f+a > 0 can be proved via sums of squares. On the other hand, Hatami and Norine showed that testing whether a graph density inequality f > 0 is valid is an undecidable problem, and also provided explicit but complicated examples of inequalities that cannot be proved using sums of squares. I will introduce the sums of squares method, do several examples of sums of squares proofs, and then present simple explicit inequalities that show strong limitations of the sums of squares method. This is joint work in progress with Annie Raymond, Mohit Singh and Rekha Thomas.

Distribution of Resonances for Hyperbolic Surfaces

Series
Math Physics Seminar
Time
Wednesday, October 10, 2018 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David BorthwickDept. of Math. and Comp. Science, Emory University
Non-compact hyperbolic surfaces serve as a model case for quantum scattering theory with chaotic classical dynamics. In this talk I’ll explain how scattering resonances are defined in this context and discuss our current understanding of their distribution. The primary focus of the talk will be on some recent conjectures inspired by the physics of quantum chaotic systems. I will introduce these and discuss the numerical evidence as well as recent theoretical progress.

TBA David Borthwick

Series
Math Physics Seminar
Time
Wednesday, October 10, 2018 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David BorthwickDept. of Math. and Comp. Science, Emory University
TBA

Introduction to h-principle

Series
Geometry Topology Student Seminar
Time
Wednesday, October 10, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech
This talk will be an introduction to the homotopy principle (h-principle). We will discuss several examples. No prior knowledge about h-principle will be assumed.

Pages